Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Поверхности вращения, образованные окружностью




Вращением окружности можно получить следующие виды поверхностей вращения:

· сферу, если окружность вращается вокруг её диаметра (рис.10.5);

Рис.10.5

· тор, если окружность вращается вокруг оси, лежащей в плоскости окружности, но не проходящей через её центр. При этом ось вращения может пересекать окружность, касаться ее и располагаться вне окружности. В первых двух случаях торназывается закрытым (рис.10.6), в последнем - открытым или кольцом (рис.10.7).

Рис.10.6 Рис.10.7

 

 

На рис.10.8 приведён комплексный чертёж открытого тора, заданного образующей окружностью m и осью вращения i. Очерком поверхности на плоскости П1 является проекции экватора и горла, а на плоскости П2 – проекция главного меридиана (две образующие окружности.

Тор является поверхностью четвертого порядка, поэтому пересекается произвольной прямой в четырех точках.

 

Рис.10.8




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 303; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.