Определение 1.1. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность
x1, х2, …, хn = {xn}
Общий элементпоследовательности является функцией от n.
xn = f(n)
Таким образом последовательность может рассматриваться как функция порядкового номера элемента. Задать последовательность можно различными способами – главное, чтобы был указан способ получения любого члена последовательности.
Пример 1.1. {xn} = {(-1)n} или {xn} = -1; 1; -1; 1; …
{xn} = {sinpn/2} или {xn} = 1; 0; 1; 0; …
Для последовательностей можно определить следующие операции:
1) Умножение последовательности на число m: m{xn} = {mxn}, т.е. mx1, mx2, …
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление