Если в передаточную функцию вместо оператора Лапласа подставить мнимую переменную Фурье , получим частотную передаточную функцию , которую называют просто частотной функцией. Ее можно представить в виде действительной и мнимой частей (компонент)
(7.3)
или в комплексной форме
, (7.4)
где – модуль частотной функции, а – ее фаза.
Покажем связь между компонентами частотной функции и амплитудно–фазовой характеристикой (АФХ). Для этого на комплексной плоскости (рис. 6) отложим действительную и мнимую части. Если полученную точку А соединить с началом координат, получим вектор , длина (модуль) которого равен , а аргумент (угол, образованный этим вектором с действительной положительной полуосью) – .
Таким образом
, . (7.5)
Рис. 7.6. Построение АФХ по компонентам частотной функции
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление