КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Точки экстремума. Определение 5.1. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала
Определение 5.1. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Dx) > f(x2) при любом Dх (Dх может быть и отрицательным). Очевидно, что функция, определенная на отрезке может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные. Определение 5.2. Точки максимума и минимума функции называются точками экстремума. Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то производная функции обращается в нуль в этой точке. Доказательство. Предположим, что функция f(x) имеет в точке х = х1 максимум. Тогда при достаточно малых положительных Dх>0 верно неравенство: , т.е. Тогда По определению: . Т.е. если Dх®0, но Dх<0, то f¢(x1) ³ 0, а если Dх®0, но Dх>0, то f¢(x1) £ 0. А возможно это только в том случае, если при Dх®0 f¢(x1) = 0. Для случая, если функция f(x) имеет в точке х2 минимум теорема доказывается аналогично. Теорема доказана.
Следствие. Обратное утверждение неверно. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум. Красноречивый пример этого – функция у = х3, производная которой в точке х = 0 равна нулю, однако в этой точке функция имеет только перегиб, а не максимум или минимум. Определение 5.2. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю. Рассмотренная выше теорема дает нам необходимые условия существования экстремума, но этого недостаточно. Пример 5.1. f(x) = ôxô; Пример 5.2. f(x) = . y
x
В примере 5.1 в точке х = 0 функция имеет минимум, не имеет производной. В примере 5.2 в точке х = 0 функция не имеет ни максимума, ни минимума. Вообще говоря, функция f(x) может иметь экстремум в точках, где производная не существует или равна нулю. Теорема. (Достаточные условия существования экстремума). Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1). Если при переходе через точку х1 слева направо производная функции f¢(x) меняет знак с “+” на “-“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум.
Доказательство. Пусть . По теореме Лагранжа: f(x) – f(x1) = f¢(e)(x – x1),где x < e < x1. Тогда: 1) Если х < x1, то e < x1; f¢(e)>0; f¢(e)(x – x1)<0, следовательно f(x) – f(x1)<0 или f(x) < f(x1). 2) Если х > x1, то e > x1 f¢(e)<0; f¢(e)(x – x1)<0, следовательно f(x) – f(x1)<0 или f(x) < f(x1). Т. к. ответы совпадают, то можно сказать, что f(x) < f(x1) в любых точках вблизи х1, т.е. х1 – точка максимума. Доказательство теоремы для точки минимума производится аналогично. Теорема доказана. На основе вышесказанного можно выработать единый порядок действий при нахождении наибольшего и наименьшего значения функции на отрезке: 1) Найти критические точки функции. 2) Найти значения функции в критических точках. 3) Найти значения функции на концах отрезка. 4) Выбрать среди полученных значений наибольшее и наименьшее.
Дата добавления: 2014-01-07; Просмотров: 579; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |