Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Бескомпрессорный газлифт и периодическая газлифтная добыча нефти

Принцип действия газлифтного подъемника

ГАЗЛИФТНАЯ ДОБЫЧА НЕФТИ

Подземное оборудование фонтанных скважин

К подземному оборудованию относятся насосно-компрессорные трубы

Если пластовой энергии недостаточно для подъема нефти от забоя на поверхность, фонтанирование скважины прекра­щается. Фонтанирование ее можно искусственно продолжить путем подачи в скважину сжатого газа или воздуха.

Газлифтный способ добычи нефти имеет следующие пре­имущества:

а) оборудование размещено на поверхности и доступно для
обслуживания и ремонта;

в) относительная легкость регулирования дебита скважины;

г) отбор больших количеств жидкости;

. Недостатки газлифтного способа добычи нефти:

а) низкий к. п. д. газлифтной установки;

б) большой расход труб (металла);

в) необходимость строительства громоздких компрессорных станций.

В результате этого затраты на оборудование одной газ­лифтной скважины, расход электроэнергии на подъем 1 т нефти выше, чем при других способах добычи.

Система, состоящая из эксплуатационной колонны и спу­щенных в нее насосно-компрессорных труб, в которой подъем жидкости осуществляется с помощью сжатого газа, называется газлифтом (газовый подъемник). Способ эксплуатации сква­жин с использованием газа или воздуха, сжатых на поверхно­сти в компрессорах, называется компрессорным. В затрубное пространство с помощью компрессоров нагнетают сжатый газ, результате чего уровень жидкости в этом пространстве бу­дет понижаться, а в насосно-компрессорных трубах — повы­шаться. Когда уровень жидкости понизится до нижнего конца насосно-компрессорных труб, сжатый газ начнет поступать в на­сосно-компрессорные трубы и перемешиваться с жидкостью. В результате плотность такой газожидкостной смеси будет меньше плотности жидкости, поступающей из пласта, а уро­вень жидкости в подъемных трубах будет повышаться. Чем больше будет введено газа, тем меньше будет плотность смеси и тем на большую высоту она поднимется. При непрерывной подаче сжатого газа в скважину жидкость (смесь) поднима­ется до устья и выливается на поверхности, а из пласта по­стоянно поступает в скважину новая порция неразгазированнои жидкости.

Если в качестве рабочего агента для газового подъемника используют газ из газовых пластов высокого давления, не нуждающийся в дополнительном сжатии, то энергию газа можно применять для подъема жидкости в нефтяных скважинах. Такая система называется бескомпрессорным газлифтом (бескомпрессорный газовый подъемник).

Технологическая схема этого способа: газ высокого давле­ния из газовых скважин поступает на пункт очистки и осушки, затем подогревается в специальных подогревателях, откуда направляется в газораспределительную будку (ГРБ), а затем в скважины, после чего вместе с продукцией скважины попа­дает на групповую сепарационно-замерную установку.

При периодической газлифтной добыче нефти газ нагнета­ется в скважину не непрерывно, а периодически. Этот способприменяют при низких динамических уровнях жидкости и низ­ких пластовых давлениях.

Рассмотрим схему периодической добычи нефти. Газ нагне­тается в затрубное пространство, а нефть поднимается по подъемным трубам. После выброса нефти на поверхность по­дача газа автоматически прекращается. При этом в скважине скапливается нефть. Через определенный промежуток времени уровень восстанавливается и автоматически включается подача газа, т. е. цикл повторяется

Периодически работающий фонд скважин.

В практике нефтедобычи не всегда удается достаточно точно рассчитать добывные.возможности скважины и соответственно подобрать нужный типоразмер насоса. В тех случаях, когда дебит скважины значительно меньше производительности спущенного для эксплуатации скважины насоса, его работа настраивается на периодический режим. Такой фонд скважин называют периодическим. На практике в периодическом режиме находятся несколько процентов механизированных скважин, оснащенных УЭЦН и ШГН.

Режим работы этих скважин, т.е. время работы насоса и время, необходимое для накопления ствола скважины продукцией определяется технологической службой НГП. Время работы и время накопления (в часах) отражается в технологических режимах работы скважин.

Осложнения при насосной эксплуатации скважин

Значительное количество свободного газа на приеме насоса приводит к уменьшению коэффициента наполнения насоса, срыву подачи выходу из строя электродвигателя.. Основной метод борьбы - уменьшение газосодержания в жидкости, поступающей в насос.

Сепарацию (отделение) газа можно улучшить с помощью защитных устройств и приспособлений, называемых газовыми якорями (газосепараторами), которые устанавливаются при приеме насоса. Работа их основана на использовании сил гравитации (всплывания), инерции, их сочетания.

 

Принципиальные схемы газовых якорей однокорпусного (а),

однотарельчатого (б):

1 - эксплуатационная колонна; 2 – отверстия; 3 – корпус; 4 – приемная труба;

5 – всасывающий клапан насоса; 6 – тарелки

 

В однокорпусном якоре при изменении газожидкостного потока на 1800 пузырьки газа под действием архимедовой силы всплывают и частично сепарируются в затрубное пространство, а жидкость через отверстия 2 поступает в центральную трубу 4 на прием насоса). В однотарельчатом якоре под тарелкой 6, обращенной краями вниз, пузырьки газа коалесцируют (объединяются), а сепарация газа происходит при обтекании тарелки и движения смеси горизонтально над тарелкой к отверстиям 2 в приемной трубе 4. Существуют и другие конструкции якорей, например зонтичные, винтовые.

При эксплуатации скважин УЭЦН используют модули-газосепараторы в которых отделение газа происходит под действие центробежной силы.

Отрицательное влияние песка в продукции приводит к абразивному износу плунжерной пары, клапанных узлов, НКТ, ШТАНГ и образованию песчаной пробки на забое. К песчаным скважинам относят скважины с содержанием песка более 1 г/л.

Выделяют 4 группы методов борьбы с песком при насосной эксплуатации:

1. Наиболее эффективный метод - предупреждение и регулирование поступления песка из пласта в скважину. Первое осуществляют посредством либо установки специальных фильтров на забое, либо крепления призабойной зоны, а второе - уменьшением отбора жидкости.

2. Обеспечение выноса на поверхность значительной части песка, поступающего в скважину.

Это обеспечивается подбором сочетаний подъемных труб и штанг либо подкачкой в затрубное пространство чистой жидкости (нефти, воды).

3. Установкой песочных якорей (сепараторов) и фильтров у приема насоса достигается сепарация песка от жидкости. Работа песчаных якорей основана на гравитационном принципе

Песочный якорь прямого действия одновременно является газовым якорем. Применение песочных якорей - не основной, а вспомогательный метод борьбы с песком. Метод эффективен для скважин, в которых поступление песка непродолжительно и общее его количество невелико.

 

Принципиальная схема песочного якоря прямого действия:

1 – эксплуатационная колонна, 2 – слой накопившегося песка, 3 –корпус, 4 – приемная труба, 5 – отверстия для ввода смеси в якорь.

 

4. Использование специальных насосов для песочных скважин.

При большой кривизне ствола скважины наблюдается интенсивное истирание НКТ и штанг вплоть до образования длинных щелей в трубах или обрыва штанг. Для медленного проворачивания колонны штанг и плунжера "на выворот" при каждом ходе головки балансира с целью предотвращения одностороннего истирания штанг, муфт и плунжера при использовании пластинчатых скребков применяют штанговращатель. Кроме того, принимают режим откачки, характеризующийся большой длиной хода S и малым числом качаний n.

 

БОРЬБА С ОТЛОЖЕНИЕМ ПАРАФИНА В ПОДЪЕМНЫХ ТРУБАХ

Одним из факторов, осложняющих процесс подготовки и транспорта, является отложение парафина на стенках трубопроводов и оборудовании

Образованию отложений парафина способствует: снижение температуры; интенсивное выделение газа из нефти; шероховатость поверхности оборудования и; наличие асфальто-смолистых веществ

Для борьбы с отложениями парафина применяют следующие основные способы:

1. Механический, при котором парафин со стенок труб периодически удаляется специальными скребками и выносится поток м жидкости, удаление парафина во время чистки аппаратов. Существует метод депарафинизации с помощью пластинчатых скребков. Скребки крепят хомутами к штангам на расстоянии друг от друга не более длины хода плунжера. Ширина скребка на 5 – 8 мм меньше диаметра НКТ. Насосные установки оборудуют штанговращателями. Колонны штанг с укрепленными на них скребками при каждом ходе вниз срезают парафин со стенок труб. Так же широко используют установки для механического удаления парафина «Каскад» и лебедку Сулейманова.

 

2. Тепловой, теплоизоляция трубопроводов; (использование парогенераторных установок, путевых подогревателей)

3. Использование труб с гладкой внутренней поверхностью (остеклованных или покрытых специальным лаком или эмалями).

4. Химический, при котором парафин удаляется с помощью растворителей и растворов ПАВ

Химические методы борьбы с отложениями парафина развиваются и создаются по двумосновным направлениям:

· удаление смолопарафиновых отложений с помощью органических растворителей и водных растворов различных композиций поверхностно-активных веществ (ПАВ);

· предотвращение отложения парафина применением химпродуктов, ингибирующих процесс формирования смолопарафиновых отложений.

Сущность химических методов удаления парафиновых отложений заключается в предварительном их разрушении или растворении с последующим удалением. Для этих целей используются: органические растворители и водные растворы ПАВ, которые при контакте с парафиновыми отложениями проникают в их толщу и, диспергируя (дробят, разрушают) смолопарафиновую массу, снижают их прочность вплоть до разрушения.

Для предотвращения парафиноотложения применяют разнообразные композиции химических веществ

При использовании ПАВ на поверхности оборудования создается гидрофильная пленка, препятствующая формированию на ней отложений. Одновременно такой реагент оказывает диспергирующее действие на твердую фазу смолопарафиновых веществ, что способствует беспрепятственному выносу их потоком жидкости. Для предупреждения отложений парафина применяются химреагенты, предотвращающие рост кристаллов и изменяют кристаллическую структуру парафинов. В результате образуются недоразвитые кристаллы парафина, структурно несоединенные друг с другом.

Для этих целей используются ингибитор: парафиноотложений СОНПАР-5403и СНПХ-2005, парафиногидратоотложений СНПХ-7920 удалитель парафиноотложений СНПХ-7850. На практике нередко химические методы удаления парафиновых отложений применяются в сочетании с тепловыми и механическими методами. При этом достигается наибольший технологический и экономический эффект в результате существенного ускорения процесса и полноты удаления смолопарафиновых отложений.

Образование гидратных пробок, меры предупреждения их образования.

Природные газы в условиях пласта насыщены парами воды. Движение газа в пласте, скважине и газопроводах сопровождается уменьшением его температуры и давления. Пары воды конденсируются и скапливаются в скважине и газопроводах. При определенных термодинамических условиях в результате взаимодействия паров воды и газов образуются твердые кристаллические вещества, называемые кристаллогидратами. По внешнему виду гидраты напоминают снег или лед. Это неустойчивые соединения и при нагревании или понижении давления быстро разлагаются на газ и воду. Образовавшиеся гидраты могут закупорить скважины, газопроводы, сепараторы, нарушить работу измерительных приборов и регулирующих средств.

Борьба с гидратами, как и с любыми осложнениями, ведется в направлениях их предупреждения и ликвидации. Образование гидратов можно предупредить применением ингибиторов гидрато-образования. Ингибитор гидратообразования снижает температуру гидратообразования. Основные ингибиторы, применяемые в газовой промышленности, — метиловый спирт СНзОН (метанол), хлористый кальций, гликоли (этиленгликоль, ди-и триэтиленгликоль), СНПХ- 7920 (ингибитор парафино-гидратоотложений). Известны и другие методы предупреждения образования гидратов: применение забойных на­гревателей, теплоизолированных стволов скважины, гидрофобного покрытия труб. Для предотвращения образования гидратов и их ликвидации можно применить подогрев газа путем теплообмена с горячими дымовыми газами.

Когда гидратная пробка уже образовалась, то резкое снижение давления в системе приводит к разложению гидратов, которые затем выносятся продувкой через отводы в атмосферу

Виды коррозии нефтепромыслового оборудования.

Процесс разрушения трубопроводов под воздействием внешней окружающей и внутренней среды называется коррозией.

Химической коррозией называется процесс разрушения всей поверхности металла при его контакте с химически агрессивным агентом.

Электрохимическая коррозия — это процесс разрушения металла, сопровождающийся образованием и прохождением электрического тока.

Биокоррозия трубопроводов вызывается активной жизнедеятельностью микроорганизмов а результате жизнедеятельности которых образуется сероводород.(сулфатвосстанавливающих бактерий)

 

Пассивные и активные способы защиты трубопроводов от коррозии.

ЗАЩИТА ТРУБОПРОВОДОВ ОТ ВНУТРЕННЕЙ КОРРОЗИИ

1.Кардинальным средством борьбы с коррозионным повреждением стальных труб является замена их на трубы из композитных материалов: стеклопластиков, из армированных термопластов.

Полиэтиленовые трубы имеют в 7 раз меньшую массу, чем стальные. Для их монтажа не требуется тяжелого подъемно-транспортного оборудования. Они обладают большой эластичностью, высокой гладкостью, вследствие чего их пропускная способность увеличивается на 2-3%. Теплопроводность стеклопластика в 250 раз меньше, чем у металла, то есть он обладает повышенными теплоизоляционными характеристиками.

2. Покрытие внутренний поверхности труб (лаки, краски. эпоксидные смолы итд)

3. Эффективным методом защиты является ингибирование, так как ингибиторы тормозят процесс коррозионного зарождения трещин на поверхности металла. Кроме того, многие ингибиторы способны проникать в вершину зародившейся трещины и сдерживать ее развитие. (ингибитор коррозии-бактерицид СНПХ-6418)

ЗАЩИТА ТРУБОПРОВОДОВ ОТ ВНЕШНЕЙ КОРРОЗИИ

Способы защиты трубопроводов от наружной коррозии подразделяются на пассивные и активные.

Пассивные способы защиты предусматривают изоляцию наружной поверхности трубы от контакта с грунтовыми водами и от блуждающих электрических токов, которая осуществляется с помощью противокоррозионных диэлектрических покрытий, обладающих водонепроницаемостью, прочным сцеплением с металлом, механической прочностью. Для изоляции промысловых трубопроводов применяют покрытие на битумной основе и на основе полимеров.

 
 

Битумная мастика для покрытий содержит минеральный наполнитель или резиновую крошку для повышения ее вязкости в горячем состоянии и увеличения механической прочности покрытия. Для повышения прочности и долговечности битумных покрытий используют бризол и стекловолокнистые материалы.

Покрытия на основе полимеров представляют собой полиэтиленовые или полихлорвиниловые пленки с применением клея. Ленту пленки наматывают на очищенный и загрунтованный трубопровод.

Активные способы защиты трубопроводов от наружной коррозии предусматривают создание такого электрического тока, в котором весь металл трубопровода, несмотря на неоднородность его включений, становится катодом, а анодом является дополнительно размещенный в грунте металл. Существуют два вида активной защиты трубопроводов от наружной коррозии — протекторная и катодная. При протекторной защите рядом с трубопроводом размещают более активный металл (протектор), который соединяют с трубопроводом изолированным проводником. Протекторы изготовляют из цинка, алюминия или магниевых сплавов. При катодной защите с помощью источника постоянного тока (катодной станции) (рис.9). создают разность потенциалов между трубопроводом и размещенными рядом с трубопроводом кусками металла (обычно обрезки старых труб, металлолом) так, что на трубопровод подается отрицательный заряд, а на куски металла -— положительный. Таким образом, дополнительно размещаемый в грунте металл как в протекторной, так и в катодной защите, является анодом и подвергается разрушению, а наружная коррозия трубопровода не происходит.

НЕФТЯНЫЕ ЭМУЛЬСИИ И ИХ СВОЙСТВА

Скважинная продукция представляет собой смесь газа, нефти и воды. Вода и нефть при этом образуют эмульсии.

Эмульсией называется дисперсная система, состоящая из 2-х (или нескольких) жидких фаз, т.е. одна жидкость содержится в другой во взвешенном состоянии в виде огромного количества микроскопических капель (глобул).

Жидкость, в которой распределены глобулы, называются дисперсионной средой или внешней фазой.

Жидкость, которая распределена в дисперсионной среде, называется дисперсной или внутренней фазой.

Существуют два основных типа эмульсий: дисперсии масла в воде (М/В) и дисперсии воды в масле (В/М).

Нефтяные эмульсии:

1. Первый тип – прямые эмульсии, когда капли нефти (неполярная жидкость), являются дисперсной фазой и распределены в воде (полярная жидкость) – дисперсионной среде. Такие эмульсии называются «нефть в воде» и обозначаются Н/В.

2. Второй тип – обратные эмульсии, когда капельки воды (полярная жидкость) – дисперсная фаза – размещены в нефти (неполярная жидкость), являющейся дисперсионной средой. Такие эмульсии называются «вода в нефти» и обозначаются В/Н.

Причины образования нефтяных эмульсий.

Эмульсией называется система двух взаимно нерастворимых жидкостей одна из которых содержится в другой во взвешенном состоянии в виде капелек (глобул). Основной причиной образования нефтяных эмульсий является энергия турбулентного потока, снижение температуры, наличие природных эмульгаторов.

Высокие перепады давления, пульсация газа, наличие штуцирующих устройств, задвижек, поворотов трубопровода способствуют повышению турбулентности потока и интенсивному диспергированию воды в нефти. Отложения парафина на стенках трубопровода влияют на образование эмульсий, уменьшая его сечение, увеличивают скорость потока и усиливают диспергирование воды в нефти.

Интенсивность перемешивания нефти с водой также влияет на образование и стойкость эмульсии. Замечено, что при механизированных способах добычи наиболее устойчивые водонефтяные эмульсии которые образуются при использовании электроцентробежных насосов (перемешивание продукции в рабочих колесах)

Для образования эмульсий недостаточно только перемешивания двух жидкостей, необходимо ещё и наличие в нефти природных эмульгаторов — смолы, асфальтены, парафин, мех. примеси. Они образуют на поверхности эмульсионных глобул броню, которая препятствует слиянию капель и не дает самопроизвольно разделятся на нефть и воду.

Необходимость подготовки нефти и газа к транспорту на промыслах.

ü Нефть на месторождениях обезвоживают и обессоливают для снижения транспортных расходов, так как вода является балластом и её нет необходимости транспортировать.

ü Для предотвращения образования стойких эмульсий.

ü Для предохранения магистральных трубопроводов от коррозии.

ü Для поддержания пластового давления.

ü В газовых сепараторах от газа отделяется газовый и водный конденсат, что снижает возможность гидратообразования.

ü Отделившееся газ используют как топливо, для собственных нужд (печи, котельные установки).

Способы разрушения нефтяных эмульсий.

Условно можно выделить 4 группы методов разрушения нефтяных эмульсий:

- механические;

- химические;

- электрические;

- термические.

Каждый из методов приводит к слиянию и укрупнению капель воды, что способствует более интенсивной потере агрегативной устойчивости и расслоению эмульсии.

ХИМИЧЕСКИЕ МЕТОДЫ

Применение реагентов-деэмульгаторов является самым эффективным методом разрушения нефтяных эмульсий (НЭ). Устойчивость нефтяных эмульсий определяется образованием на поверхности капель дисперсной фазы адсорбционных оболочек с высокой структурной вязкостью из высокомолекулярных ПАВ, присутствующих в нефти и воде – природных эмульгаторов. Для разрушения нефтяных эмульсий необходимо разрушить структурно-механический барьер на поверхности капель. Разрушить такой барьер можно введением в систему более поверхностно-активных веществ, чем природные эмульгаторы. Такие вещества называются реагентами-деэмульгаторами.

Водорастворимые отечественные деэмульгаторы типа: проксанол (185, 305) и проксамин (385).

Нефтерастворимые отечественные деэмульгаторы: дипроксамин (157).

Импортные реагенты-деэмульгаторы:

Водорастворимые: дисольван 4411(ФРГ), R-11(Япония);

Нефтерастворимые: дисольван (4490), сепарол 5084 (ФРГ), виско-3 (Италия), серво 5348 (Голландия), доуфакс (США), С-V-100 (Япония).

В настоящее время в условиях месторождений «СН-МНГ» приимущесвенно используются реагенты СНПХ и дисольван.

ДЕЭМУЛЬГИРОВАНИЕ ПОД ДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Под действием электрического поля капли воды поляризуются, вытягиваются вдоль силовых линий поля и начинают направленно двигаться. Если электрическое поле будет переменным, то направление движения капель будет постоянно изменяться, капли будут испытывать деформацию При столкновении таких диполей оболочки разрываются, частицы сливаются, укрупняются и оседают под действием сил тяжести

МЕХАНИЧЕСКИЕ МЕТОДЫ

К механическим способам разрушения эмульсии относятся: отстаивание, центрифугирование и фильтрование.

Отстаивание

Применимо к свежим нестойким эмульсиям, способным расслаиваться на нефть и воду вследствие разности плотностей компонентов, составляющих эмульсию. Нефтяная эмульсия вместе с необходимым количеством деэмульгатора и пластовой водой подается в отстойник (может быть резервуар).

Центрифугирование

При центрифугировании вода и механические примеси выделяются из нефти под действием центробежной силы

Разделение водонефтяных эмульсий в центрифугах. Однако практического применения для деэмульгирования нефтей не нашел из-за малой пропускной способности центрифуг и высоких эксплуатационных затрат.

Фильтрация

Нестойкие эмульсии успешно расслаиваются при пропускании их через фильтрующий слой, который может быть из гравия, битого стекла, древесины и металлических стружек, стекловаты и др. материалов.

Данный метод самостоятельного применения не находит из-за громоздкого оборудования, малой производительности, необходимости часто менять фильтры, но встречается в сочетании с термохимическими методами.

ТЕПЛОВЫЕ МЕТОДЫ

При нагревании нефтяных эмульсий бронирующие слои глобул, состоящие из парафина и асфальто-смолистых веществ разрушаются, что способствует разделению нефти и воды.

 

 

Токсичность вредных веществ, применяемых при подготовке нефти.

Нефть -это жидкость от чёрного до темно- коричневого цвета, класс опасности 4. ПДК в воздухе раб.зоны до 300 млг/мЗ.

Нефть и углеводородные газы являются наркотическими ядами. Токсичность нефтей,нефт.газов возрастает при содержании в них сернистых соединений. Даже кратковременное вдыхание этих паров при концентрации выше ПДК может привести к замедлению пульса, понижению кровяного давления, потери сознания. Сырая нефть попадая на кожу человека сушит её, вызывает зуд, красноту. Деэмульгатор СНХП -жидкость светло-жёлтого цвета, класс опасности 3. ПДК - 5 млг/мЗ по метанолу. 50 млг/мЗ по толуолу.

Раздражает слизистую оболочку глаз и верхние дыхательные пути. Действует как наркотическое вещество.

В нефтяной и газовой промышленности при неправильной организации труда и производства и при несоблюдении определенных профилактических мероприятий может иметь место вредное воздействие на человека нефтяных паров, газов и других веществ, применяемых или сопутствующих производственному процессу.

Токсичность жидких нефтепродуктов проявляется в основном тогда, когда они переходят в парообразное состояние.

■ Пары нефти и продуктов ее переработки, а также углеводородные газы действуют главным образом на центральную нервную систему. Признаки отравления этими веществами чаще всего проявляются в головокружении, сухости во рту, головной боли, тошноте, сердцебиении, общей слабости и потери сознания. Удушающее действие на организм этих веществ выражается в затрудненности дыхания, головокружении, потери сознания.

Нефть может вызывать острые или хронические отравления, если в ней содержатся ароматические углеводороды или сероводород. При длительном соприкосновении работающих с сырой нефтью может развиться кожное заболевание.

■ Бензин наиболее токсичный нефтепродукт. Концентрация паров бензина в воздухе, равная 30 - 40 г/м3, при вдыхании человеком в течение нескольких минут создает опасность для его жизни. При меньших концентрациях отравление происходит не сразу: в начале пострадавший ощущает, головокружение, сердцебиение, слабость, иногда возникает состояние опьянения, а затем наступает потеря сознания. Если такого пострадавшего своевременно не вывести на свежий воздух и не оказать необходимую помощь, он может умереть.

Хронические отравления бензином возможны при длительном контакте работающего с относительно небольшими концентрациями паров этого нефтяного продукта и выражаются в постоянной головной боли, головокружении и других нервных расстройствах.

При воздействии на кожу человека бензин обезжиривает ее и может вызвать кожные заболевания- дерматиты и экземы.

■ Керосин действует на организм человека значительно слабее, чем бензин. Хронические отравления парами керосина возможны при длительном контакте с ними.

■ Мазут и смазочные масла оказывают вредное влияние на кожу человека.

■ Метан - газ, входящий в состав попутного нефтяного и природного газов. Он не имеет ощутимого запаха, не ядовит. При содержании в воздухе около 10% метана человек испытывает недостаток кислорода, а при большем содержании может наступить удушье.

■ Сероводород - бесцветный газ с сильным характерным запахом тухлых яиц. Он тяжелее воздуха и содержится в нефти и природных газах некоторых месторождений. Сероводород сильный яд, действующий на нервную систему и оказывающий значительное раздражение дыхательный путей и глаз человека. Ощутимый запах сероводорода наблюдается при концентрациях 0,0014 - 0,0023 мг/л и сильный - при концентрации 0,0033 мг/л.

Воздействие различных концентраций сероводорода на организм человека выражается в следующем: при содержании сероводорода во вдыхаемом воздухе в количестве 0,01 - 0,015 об % через несколько часов появляются симптомы легкого отравления; при содержании 0,02% - через 5-8 минут появляется сильное раздражение глаз, носа и горла; при содержании 0,05 - 0,07% - через час наступает тяжелое отравление, а при содержании 0,1-0,32% - быстрое смертельное отравление.

Характер и степень нарушения нормальной деятельности организма зависят не только от токсических свойств данного вещества, но и от концентрации его и продолжительности воздействия на человека.

■Предельно-допустимые концентрации вредных веществ в воздухе (ПДК).

Санитарные нормы.

№№ пп Вещество ПДК мг/м3
  Бензин-растворитель (в пересчете на С)  
  Бензол  
  Бутан  
  Керосин  
  Сероводород  
  Сероводород в смеси с углеводородами  
  Спирт метиловый (метанол)  
  Спирт этиловый  
  Углеводороды С1-С10  
  Углерода окись  

 

<== предыдущая лекция | следующая лекция ==>
Наземное оборудование | Психогенетика
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 4591; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.075 сек.