![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. Примеры решения задач
Примеры решения задач 1. В задаче рассматривается взаимодействие распределённых зарядов, поэтому для нахождения силы F следует воспользоваться соотношением:
dq = t2dr (2)
можно считать точечным и рассматривать dF как силу, действующую со стороны электрического поля нити на dq.
Выражение (1) можно переписать в скалярной форме, учитывая, что векторы dF = Edq. (4) Подставив (2) и (3) в (4), получим
Для нахождения результирующей силы, действующей на отрезок нити с зарядом q2 со стороны поля прямой бесконечной нити, проинтегрируем выражение (5) в пределах от r0 до (r0+l):
После подстановки числовых значений получим
2. Полый стеклянный шар несёт равномерно распределённый по объёму заряд. Его объёмная плотность r =100 нКл/м3. Внутренний радиус шара R1 =5 см, а наружный R2 =10 см. Найти напряжённость электрического поля на расстоянии: а) r1 =3 см; б) r2 =6 см; в) r3 =12 см от центра шара.
Так как заряд шара распределён в пространстве симметрично относительно центра шара О, то и электрическое поле симметрично относительно этой точки. Это позволяет применить для решения задачи метод Гаусса. Из симметрии задачи следует, что вектор
где S – площадь гауссовой поверхности, r – её радиус. Всё пространство можно разбить на 3 области: 1) 0 < r < R1 2) R1 < r < R2 3) r > R2. Применим теорему Гаусса для каждой области. Для области 0 < r < R1. Величина свободного заряда, охватываемого поверхностью интегрирования в пределах первой области, равна нулю. Следовательно, поток вектора смещения также равен нулю, а так как площадь поверхности не нулевая, то смещение и напряжённость поля в пределах первой области равны нулю: D1 = 0, Е1 = D/e0 = 0. Для области R1 < r < R2. Свободный заряд, охватываемый гауссовой поверхностью, может быть выражен через объём той части шара, которая попала внутрь сферы радиусом r2: q своб = Применяя теорему Гаусса, получим D24pr22 = E2 = где e – диэлектрическая проницаемость стекла.
Для области r > R2. Внутрь поверхности попадёт весь заряд шара, поэтому q своб = (4/3)p(R23 - R13), и, применив теорему Гаусса, получим выражение D3 4pr32 = (4/3) p (R23 - R13)r; Е 3 = D 3/e0 =
Дата добавления: 2014-01-07; Просмотров: 706; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |