Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Нуклеиновые кислоты




Белки

Как уже отмечалось выше, благодаря пептидным связям аминокислоты образуют белки. Часть белков образует комплексы с молекулами, содержащими серу, фосфор, железо, цинк и медь. Молекулярная масса белковых цепей колеблется от нескольких тысяч до нескольких миллионов (в вирусе табачной мозаики – около 40 000 000 молекул); в их состав входят сотни (иногда – сотни тысяч) аминокислотных остатков.

Потенциально многообразие белков очень велико – каждому белку соответствует своя особая последовательность аминокислот, контролируемая генетически. На долю белков приходится около половины сухой массы клетки.

 
 

Классификация белков крайне затруднена их многообразием и сложностью молекул. К простым белкам, состоящим только из аминокислот, относят альбумины (яичный альбумин и сывороточный альбумин крови), глобулины (антитела в крови, фибрин), гистоны, склеропротеины (кератин волос, кожи и перьев, коллаген сухожилий, эластин связок). К сложным белкам, включающим небелковый материал, относят фосфопротеины (казеин молока, вителлин яичного желтка), гликопротеины (плазма крови, муцин), нуклеопротеины (хромосомы и рибосомы), хромопротеины (гемоглобин, фитохром, цитохром), липопротеины, флавопротеины, металлопротеины.

По структуре белки делятся на фибриллярные (третичная структура почти не выражена, нерастворимы, представляют собой длинные полипептидные цепи), глобулярные (третичная структура хорошо выражена, растворимы) и промежуточные (фибриллярные, но растворимые). Первые входят в состав соединительных тканей, вторые играют роль ферментов, гормонов, антител.

Функционально белки могут быть структурными (компоненты соединительных тканей, слизистых секретов), транспортными (перенос крови, липидов), защитными (антитела, тромбообразование), сократительными (в мышечных тканях), запасными (молоко, белок), ферментами, гормонами, токсинами (змеиный яд).

Главная функция белков - каталитическая. Белки-катализаторы ускоряют химические реакции в клетке. Регуляторную функцию выполняют гормоны. Например, белок инсулин регулирует содержание сахара в крови. При недостатке инсулина у человека развивается болезнь - сахарный диабет.

Белки, как и углеводы, выполняют в клетке структурную функцию. Молекулы белков входят в состав всех клеточных мембран. Молекулы белка коллагена составляют основу хрящей и сухожилий. Из белка состоят волосы, шерсть, ногти, рога, копыта, чешуя, перья, паутина.

Двигательную функцию выполняют белки актин и миозин, способные вызывать сокращение мышечных волокон, а также белки, входящие в состав ресничек, жгутиков одноклеточных и специализированных клеток, например сперматозоидов многоклеточных организмов.

Специальные белки выполняют защитную функцию. Антитела, образующиеся у позвоночных,- это белки, которые обезвреживают проникающие в организм чужеродные вещества. Белок фибриноген участвует в свертывании крови.

Белки выполняют также транспортную функцию. Например, белок крови гемоглобин, который входит в состав эритроцитов, образует в легких непрочные соединения с кислородом и доставляет его ко всем клеткам организма.

Некоторые белки выполняют запасающую функцию, накапливаясь, например, в семенах растений.

При недостатке полисахаридов и липидов белки могут выполнять энергетическую функцию. При окислении молекул белков в клетке освобождается энергия примерно в таком же количестве, как и при окислении углеводов.

Каждому белку свойственна особая геометрическая структура. При описании пространственной структуры обычно описывают четыре разных уровня организации.

Под первичной структурой белка обычно понимают последовательность аминокислот. Первичная структура инсулина была открыта Ф. Сэнгером в 1944–54 годах; в настоящее время известна первичная структура нескольких сотен белков. Последовательность аминокислот определяет биологическую функцию белка, и замена одной единственной аминокислоты может резко изменить эту функцию.

Остатки аминокислот соединяются между собой в молекулу белка посредством прочной ковалентной пептидной связи. Она возникает между карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты. При этом отщепляется молекула воды (рис. 4, Б). Последовательное расположение в полипептидной цепи аминокислотных остатков, соединенных пептидными связями, определяет первичную структуру молекулы белка.

 

Обычно белковая молекула имеет форму спирали. Это так называемая вторичная структура, стабилизируемая водородными связями, возникающими между CO- и NH-группами. На один виток спирали приходится 3,6 аминокислотного остатка. Существуют и другие формы вторичной структуры, например, тройная спираль коллагена и складчатый слой фибрина.

Дисульфидные, ионные и водородные связи, а также гидрофобное взаимодействие заставляют большинство белковых цепей сворачиваться в компактную глобулу. Это так называемая третичная структура белка. Спираль благодаря наличию многочисленных и разнообразных связей между радикалами аминокислот (ковалентных, водородных и ионных) принимает более сложную конфигурацию, образуя клубки - третичную структуру белка.

Взаимное расположение в пространстве нескольких одинаковых или разных полипептидных клубков, составляющих одну белковую молекулу, образует четвертичную структуру. Наконец, многие белки с особо сложным строением состоят из нескольких полипептидных цепей – способ их упаковки называется четвертичной структурой.

Ряд причин (нагревание, воздействие каких-либо излучений, сильные кислоты и щелочи, тяжёлые металлы, органические растворители) могут вызвать денатурацию белка. Молекула временно или постоянно теряет свою третичную структуру и «сворачивается» или выпадает в осадок. Денатурация бывает частичной и полной. При частичной денатурации первичная структура белковой молекулы сохраняется. При устранении фактора, вызывающего частичную денатурацию, молекула белка вновь принимает естественную форму. При полной денатурации первичная структура разрушается и белковая молекула не может вернуться в исходное состояние.

Ферменты – глобулярные белки, синтезируемые живыми клетками. В каждой клетке имеются сотни ферментов. Они помогают осуществлять биохимические реакции, действуя как катализаторы. Без них реакции в клетке протекали бы слишком медленно и не могли бы поддерживать жизнь. Ферменты делятся на анаболические (реакции синтеза) и катаболические (реакции распада). Нередко в процессе превращения одного вещества в другое участвуют несколько ферментов; такая последовательность реакций называется метаболический путь.

Важнейшая функция белков - каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакций в клетке, называют ферментами. Ни один биохимический процесс в организме не происходит без участия ферментов.

*В настоящее время обнаружено свыше 2000 ферментов Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа Каталаза увеличивает скорость разложения пероксида водорода (H2O2) в 1011 раз Фермент, катализирующий реакцию образования угольной кислоты (CO2 + H20 «Н2СО3), ускоряет реакцию в 107 раз.

Важным свойством ферментов является специфичность их действия. каждый фермент катализирует только одну или небольшую группу сходных реакций.

Вещество, на которое воздействует фермент, называют субстратом. Структуры молекулы фермента и субстрата должны точно соответствовать друг другу Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.

Последовательность взаимодействия фермента и субстрата можно изобразить схематично:

Субстрат + Фермент ® Фермент-субстратный комплекс ® Фермент + Продукт.

Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса При этом субстрат превращается в новое вещество - продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.

Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а следовательно, и к подавлению активности фермента Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром. Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.

Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра и фермент теряет свою активность.

 

Ферменты - это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов - специфичность действия в определенных условиях.

 

Основные свойства ферментов:

  • увеличивают скорость реакции;
  • не расходуются в реакции;
  • их присутствие не влияет на свойства продуктов реакции;
  • активность ферментов зависит от pH, температуры, давления и концентрации;
  • ферменты изменяют энергию активации, при которой может произойти реакция;
  • ферменты не изменяют сколько-нибудь значительно температуру, при которой происходит реакция.

Высокая специфичность фермента объясняется особой формой его молекулы, точно соответствующей молекуле субстрата (вещества, атакуемого ферментом). Эту гипотезу называют гипотезой «ключа и замка». В середине XX века исследования показали, что субстрат может вызывать изменения в структуре фермента; фермент изменяет свою форму, что даёт ему возможность наиболее эффективно выполнять свою функцию.

 

Многим ферментам для эффективной работы требуются небелковые компоненты, называемые кофакторами. Такими веществами могут быть неорганические ионы, заставляющие ферменты принять форму, способствующую ферментативной реакции, простетические группы (флавинадениндинуклеотид (ФАД), гем), занимающие такое положение, при котором они могут эффективно содействовать реакции, и коферменты (НАД, НАДФ, АТФ).

Некоторые вещества могут вызывать замедление ферментативных реакций, действуя как ингибиторы. При этом они соединяются с субстратом сами, занимая место фермента и сводя на нет ферментативный эффект (конкурентное ингибирование), или вызывают денатурацию ферментативного белка (неконкурентное ингибирование).

Важнейшая функция белков - каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакций в клетке, называют ферментами. Ни один биохимический процесс в организме не происходит без участия ферментов.

*В настоящее время обнаружено свыше 2000 ферментов Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа Каталаза увеличивает скорость разложения пероксида водорода (H2O2) в 1011 раз Фермент, катализирующий реакцию образования угольной кислоты (CO2 + H20 «Н2СО3), ускоряет реакцию в 107 раз.

Важным свойством ферментов является специфичность их действия. каждый фермент катализирует только одну или небольшую группу сходных реакций.

Вещество, на которое воздействует фермент, называют субстратом. Структуры молекулы фермента и субстрата должны точно соответствовать друг другу Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.

Последовательность взаимодействия фермента и субстрата можно изобразить схематично:

Субстрат + Фермент ® Фермент-субстратный комплекс ® Фермент + Продукт.

Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса При этом субстрат превращается в новое вещество - продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата (рис. 7).

Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а следовательно, и к подавлению активности фермента Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром. Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.

Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра и фермент теряет свою активность.

Ферменты - это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов - специфичность действия в определенных условиях.

 

   
 

 

   
   

Нуклеиновые кислоты содержат в себе генетический материал всех живых организмов. Выяснение их структуры открыло новую эру в наших знаниях о природе.

Составными частями нуклеиновых кислот являются нуклеотиды. Молекула нуклеотида состоит из пентозы, азотистого основания и фосфорной кислоты. В зависимости от типа сахара различают рибонуклеиновую кислоту (РНК; в её состав входит рибоза) и дезоксирибонуклеиновая кислота (ДНК; в её состав входит сахар дезоксирибоза, у которого на один атом кислорода меньше). В обоих типах нуклеиновых кислот содержатся четыре типа оснований: аденин (А), гуанин (Г), цитозин (Ц), тимин (Т; в РНК вместо него содержится урацил (У)). Первые два основания относятся к классу пуринов, остальные – к пиримидинам. Фосфорная кислота определяет кислотные свойства нуклеиновых кислот.

 
 

Соединяясь друг с другом фосфодиэфирной связью (3'-фосфатная группа одного и 5'-сахар другого нуклеотида), два нуклеотида образуют динуклеотид. При синтезе полинуклеотидов этот процесс повторяется миллионы раз. Фосфодиэфирный мостик является прочной ковалентной связью, обеспечивая всей цепи стабильность и уменьшая риск «поломок» ДНК.

Выяснить структуру ДНК удалось в 1953 году английским ученым Д. Уотсону и Ф. Крику. Они показали, что ДНК состоит из двух полинуклеотидных цепей. Каждая цепь закручена в спираль вправо, и обе цепи свиты вместе, образуя двойную спираль. Шаг спирали составляет 3,4 нм (по 10 пар оснований в витке), а диаметр витка – 2 нм. Фосфатные группировки находятся снаружи спирали, а азотистые основания – внутри. ДНК – очень хрупкая молекула, простое перемешивание её раствора может привести к разрыву цепей на более мелкие куски.

Число адениновых оснований в любой ДНК равно числу тиминовых оснований, число гуаниновых оснований всегда равно числу цитозиновых оснований. Никаких ограничений относительно последовательности нуклеотидов в одной цепи не существует, но эта последовательность в одной цепи полностью определяет собой последовательность нуклеотидов в другой. Пары соединяются водородными связями между основаниями в строго определённом порядке (аденин с тимином, гуанин с цитозином). Таким образом, цепи двойной спирали комплементарны друг другу.

Для того, чтобы ДНК являлась генетическим материалом, она должна быть способна нести в себе закодированную информацию и точно воспроизводиться (реплицироваться). Последующие исследования доказали, что ДНК действительно содержит в себе генетическую информацию.

Молекула РНК в отличие от ДНК состоит, как правило, из одной цепи и имеет гораздо меньшие размеры. Существует три основных вида РНК: транспортная (т-РНК), информационная (и-РНК) и рибосомная (р-РНК). Информационная РНК (и-РНК) является матрицей, которую рибосомы используют при синтезе белка. Её нуклеотидная последовательность комплементарна сообщению, содержащемуся в определённом участке ДНК. Транспортные РНК переносит аминокислоты к месту синтеза. Несколько видов р-РНК являются основным компонентом рибосом. Нуклеотидные последовательности т-РНК и р-РНК также определяются определёнными участками ДНК.

ДНК находится, главным образом, в ядре клетки (у прокариот рассредоточена по клетке), являясь основным веществом хромосом. РНК сконцентрирована в ядрышке, цитоплазме и частично в хромосомах. Молекул РНК в клетке значительно больше (иногда их десятки тысяч), чем молекул ДНК.

Роль нуклеотидов заключается не только в синтезе нуклеиновых кислот. Некоторые нуклеотиды играют важную роль в жизнедеятельности организмов, являясь коферментами. Примером могут служить аденозинфосфорные кислоты, содержащие аденин, рибозу и несколько остатков фосфорной кислоты. Присоединение каждой новой фосфатной группы к кислоте сопровождается аккумуляцией энергии, а их отщепление – выделением. Превращение аденозинтрифосфорной кислоты (АТФ) в аденозиндифосфорную (АДФ) является основой энергетического обмена внутри клетки.

 

Молекулы РНК имеются и в ядре, и в цитоплазме.

Содержание их в клетке зависит от стадии жизненного цикла клетки.

Известны три основных типа РНК: информационные, или матричные, - иРНК; рибосомные - рРНК, транспортные - тРНК, которые различаются по форме, размерам и функциям молекул. Их главная функция - участие в биосинтезе белка.

На рисунке показано строение молекул РНК. Вы видите, что молекула РНК, как и молекула ДНК, состоит из четырех типов нуклеотидов, три из которых содержат такие же азотистые основания, как и нуклеотиды ДНК (А, Г, Ц). Однако в состав РНК вместо азотистого основания тимина входит другое азотистое основание - урацил (У). Таким образом, в состав нуклеотидов молекулы РНК входят азотистые основания: А, Г, Ц, У. Кроме того, вместо углевода дезоксирибозы в состав РНК входит рибоза.

Молекула РНК, как правило, одиночная цепь, состоящая из четырех типов нуклеотидов - А, У, Г, Ц. Известны три основных вида РНК: иРНК, рРНК, тРНК. Содержание молекул РНК в клетке непостоянно, они участвуют в биосинтезе белка.

 

В клетках всех организмов имеются молекулы АТФ - аденозинтрифосфорной кислоты. АТФ - универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ - это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания - аденина, углевода - рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты. Связи, обозначенные на рисунке значком ~, богаты энергией и называются макроэргическими. Каждая молекула АТФ содержит две макроэргические связи.

При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ - аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ - аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может превращаться в АДФ, АДФ - в АТФ.

Молекулы АТФ не только расщепляются, но и синтезируются, поэтому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.

АТФ - универсальное энергетическое вещество клетки, в котором имеются богатые энергией связи. АТФ играет центральную роль в обмене энергии в клетке. РНК и АТФ содержатся как в ядре, так и в цитоплазме клетки.

Клетка в своей жизни проходит разные состояния: фазу роста и фазы подготовки к делению и деления. Клеточный цикл – переход от деления к синтезу веществ, составляющих клетку, а затем опять к делению – можно представить на схеме в виде цикла, в котором выделяют несколько фаз.

 

Клетки, сохранившие способность к митозу, имеют клеточный цикл, ограниченный последовательностью деления. Период между следующими друг за другом делениями (митозами) в таких клетках называют интерфазой. В интерфазе выделяют следующие периоды:

1. Пресинтетический период (G1). Клетка имеет полный диплоидный набор: 2n2c (гаплоидный – nc). В этот период происходят процессы биосинтеза белка, трансформации энергии и ее накопления в виде макроэргических соединений. Хромосомы в ядре деспирализованы. Клетка растет, увеличивается в размерах.

2. Синтетический период (S). Клетка готовится к предстоящему митозу. Происходит процесс репликации ДНК по принципу комплиментарности, то есть начинается процесс передачи наследственной информации. Генетическая характеристика клетки в конце синтетического периода 2n4c.

3. Постсинтетический период (G2). В этот период клетка морфологически содержит 2 молекулы ДНК. Начинается процесс надщепления хромосом на две хроматиды (дочерние хромосомы). Формируется сначала диада, а затем тетрада. Генетическая характеристика клетки 2n4c. Биохимический процесс надщепления изучен слабо. Предполагается, что на этой стадии происходит накопление высокоэнергетических соединений.

Жизнь клетки и переход от одной фазы клеточного цикла к другой регулируется изменением концентраций белков циклинов, как это показано на рисунке.

 

При подготовке к делению происходит репликация ДНК, на каждой хромосоме синтезируется ее копия. Пока эти хромосомы после удвоения не расходятся, каждая хромосома в этой паре называется хроматидой. После репликации ДНК конденсируется, хромосомы приобретают более компактную укладку, и в таком состоянии их можно увидеть в световом микроскопе. Между делениями эти хромосомы не столь конденсированы и в большей степени расплетены. Понятно, что в конденсированном состоянии им трудно функционировать. Хромосома имеет вид в виде буквы Х только во время одной из стадий митоза. Раньше считалось, что между делениями клетки хромосомная ДНК (хроматин) находится в полностью расплетенном состоянии, но сейчас выясняется, что структура хромосом достаточно сложная и степень деконденсации хроматина между делениями не очень велика.

Митоз (кариокинез, непрямое деление клетки) – наиболее распространенный способ репродукции клеток. Митоз обеспечивает возможность образования генетически равноценных клеток и сохраняет преемственность хромосом в ряду клеточных поколений. Митоз – непрерывный единый процесс деления ядра, при котором обеспечивается идентичное расположение хромосом в дочерних клетках.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 2074; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.