КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Моделювання факторних систем
Системний підхід в економічному аналізі викликає необхідність взаємозалежного вивчення факторів з урахуванням їх внутрішніх і зовнішніх зв’язків, взаємодії та взаємопідпорядкованості, що досягається за допомогою їх систематизації шляхом створення факторних систем. Факторна система – це сукупність результативного та факторних показників, пов’язаних одним причиново-наслідковим зв’язком. Математична формула, що виражає реальні зв’язки між досліджуваними явищами, називається моделлю факторної системи: у = f (х1, х2,..., хп), (4.2) де у – результативний показник; х1, х2,..., хп – факторні показники. Використання моделей в аналізі дає змогу абстрактно зобразити основні взаємозв’язки, що існують у реальній господарській системі. Процес побудови аналітичного виразу причинно-наслідкової залежності називається процесом моделювання явища, що вивчається. Моделювання – це один із методів наукового пізнання, за допомогою якого створюється модель об’єкта дослідження. Сутність його полягає в тому, що взаємозв’язок показника, який досліджується, з факторними показниками подається у формі конкретного математичного рівняння. Залежно від форми зв’язку між результативним і факторними показниками факторні моделі поділяються на дві групи: 1. Детерміновані факторні моделі – використовуються для дослідження функціонального (детермінованого) зв’язку між результативним і факторними показниками, коли при заданих початкових умовах факторна система переходить у єдиний певний стан. У детермінованих моделях результативний показник являє собою алгебраїчну суму, добуток або частку факторних показників. 2. Стохастичні факторні моделі – використовуються для дослідження ймовірносного (стохастичного) зв’язку між результативним і факторними показниками, коли при незмінних початкових умовах факторна система може переходити в різні стани з різною ймовірністю. В економічному аналізі об’єктом поглибленого вивчення є детерміновані факторні моделі. Стохастичні ж моделі (кореляційно-регресійні, дисперсійні) вивчаються в курсі статистики. При моделюванні детермінованих факторних систем необхідно дотримуватись таких вимог: 1. Фактори, що включаються в модель, і сама модель повинні мати чітко виражений характер, реально існувати, а не бути вигаданими абстрактними величинами або явищами. 2. Фактори, які входять у систему, мають не тільки бути необхідними елементами формули, а й знаходитися в причиновому зв’язку з результативним показником. Інакше кажучи, побудована факторна система повинна мати пізнавальну цінність. Розглянемо приклад двох моделей: ВП = ЧП х ПП, (4.3) ПП = ВП ¸ ЧП, (4.4) де ВП – вартість продукції; ЧП – середньорічна чисельність працівників; ПП – продуктивність праці (обсяг виробництва продукції на одного середньорічного працівника). У першій моделі фактори перебувають у причиновому зв’язку з результативним показником, а в другій – у математичному співвідношенні. 3. Усі показники факторної моделі повинні бути кількісно вимірними, тобто мати одиницю величини і необхідну інформаційну забезпеченість. 4. Факторна модель має забезпечувати можливість вимірювання впливу окремих факторів на зміну результативного показника. У детермінованому факторному аналізі використовуються чотири види факторних моделей: 1. Адитивні – моделі, в яких результативний показник є алгебраїчною сумою декількох факторних показників: . (4.5)
Прикладами адитивних моделей можуть бути будь-які балансові моделі, зокрема факторні моделі валюти балансу: А = А І + А ІІ + А ІІІ; (4.6) П = П І + П ІІ + П ІІІ + П ІV + П V, (4.7) де А, П – валюта балансу, тобто підсумок відповідно активу і пасиву; А І, А ІІ, А ІІІ – підсумки відповідних розділів активу; П І, П ІІ, П ІІІ, П ІV, П V – підсумки відповідних розділів пасиву. 2. Мультиплікативні – моделі, в яких результативний показник є добутком декількох факторних показників: . (4.8) Наприклад, факторна модель виручки від реалізації продукції: В = q х р, (4.9) де В – виручка; q – обсяг реалізації; р – ціна продукції. Деталізація, або глибина, факторного аналізу багато в чому визначається числом факторів, тому велике значення в аналізі мають багатофакторні мультиплікативні моделі. В основі побудови цих моделей лежать наступні принципи: - місце кожного фактора в моделі повинно відповідати його ролі у формуванні результативного показника; - модель слід будувати з двофакторної повної моделі шляхом послідовного розподілу факторів (як правило, якісних) на складові. Наприклад, згідно з рисунком 6.1 детермінована факторна модель валової продукції може бути дво-, три- і чотирифакторною: ВП = ЧП х РВ = ЧП х Д х ДВ = ЧП х Д х Т х ГВ; (4.10) - при написанні формули багатофакторної моделі фактори рекомендується розташовувати від кількісних до якісних з урахуванням порядку дії (спочатку фактори першого рівня, потім другого і т.д.). 3. Кратні – моделі, в яких результативний показник визначається діленням одного факторного показника на інший: У = Х1 ¸ Х2. (4.11) Наприклад, факторна модель рівня рентабельності РР = П ¸ С х 100, (4.12) де РР – рівень рентабельності, %; П – прибуток від реалізації; С – собівартість реалізованої продукції. Якщо інші види детермінованих факторних моделей можуть уключати два, три і більшу кількість факторів, то кратні моделі є тільки двофакторними. 4. Змішані (комбіновані) – моделі, в яких поєднуються в різноманітних комбінаціях адитивна, мультиплікативна та кратна залежності: У = А х (В – С); У = А ¸ (В + С); У = (А + В) ¸ С; У = А х В ¸ С.
Дата добавления: 2014-01-07; Просмотров: 2007; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |