Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Класичні методи варіаційного числення




Методи варіаційного числення можна умовно розділити на класичні й сучасні. До класичних належать методи, що ґрунтуються на рівняннях Ейлера, Лагранжа, Якобі, Вейєрштрасса. Їх доцільно застосовувати до задач, у яких області змін u (t) і y (t) не містять обмежень. Це має місце, коли розглядають малі відхилення u (t) і y (t) від усталених станів. Сучасні методи ґрунтуються на принципі максимуму Понтрягіна і методі динамічного програмування Беллмана. Їх перевагами є можливість урахування обмежень на керування та змінні стану, а також придатність до застосування ЕОМ.

Варіаційна задача з закріпленими граничними точками. Рівняння Ейлера

Під час вивчення перехідних процесів систем керування характер динаміки можна оцінювати величиною визначеного інтегралу. Наприклад, для одномірних об’єктів:

(10.13)

де y = y(t), - траєкторії координати виходу та її першої похідної за часом.

Технічна задача оптимізації динаміки об’єкта приводиться до математичної задачі знаходження екстремуму функціоналу (10.13). При цьому шукана функція повинна задовольняти крайовим умовам: y(t0) = y0; y(tк) = yk, де y0, yk – задані числа.

Така задача називається варіаційною задачею із закріпленими граничними точками (із закріпленими кінцями) (рис. 10.4).

Умова екстремуму інтегралу (10.13) при фіксованих граничних значеннях і відсутності обмежень на координати записується у вигляді рівняння Ейлера:

(10.14)

Криві, на яких реалізується екстремум функціоналу (екстремалі), є інтегральними кривими цього рівняння. Для з’ясування, чи відповідає знайдена екстремаль мінімуму функціоналу, необхідно перевірити виконання додаткових умов. Оскільки це є достатньо складною процедурою, на практиці іноді обмежуються чисельною перевіркою значення функціоналу біля знайденої екстремалі.

Приклад 10.1 Знайти криву y*(t), що проходить у фіксовані моменти часу t0 і tk через задані точки у0 і уk, на якій досягає екстремуму функціонал:

(10.15)

де k – задане число (k>0).

У даному випадку тому

Рівняння Ейлера для екстремалей функціоналу (10.15) має вигляд:

або (10.16)

Розв’язок цього рівняння запишемо у вигляді:

. (10.17)

Для визначення С1 і С2 використовуємо граничні умови:

Тоді отримуємо:

(10.18)

 

У задачах оптимізації динаміки об’єктів у загальному випадку функціонал (10.13) може містити похідні вищих порядків. Необхідну умову наявності екстремуму такого функціоналу визначає рівняння Ейлера-Пуассона (за фіксованих граничних умов і відсутності обмежень на координати):

(10.19)

Слід зазначити, що рівняння (10.14) і (10.19) застосовуються для знаходження екстремумів відповідних функціоналів тільки тоді, коли координати y(t) є безперервними гладкими функціями і не мають обмежень типу нерівностей.

Ці рівняння виражають першу необхідну умову екстремуму. Однак, залишається неясним, є отримані екстремалі максимумом чи мінімумом функціоналу. Відповідь на це запитання дає теорема Лежандра, яка виражає другу необхідну умову екстремуму:

Для того, щоб функціонал (10.13) у задачі із закріпленими кінцями досягав на кривій мінімуму (максимуму), необхідно, щоб уздовж цієї кривої виконувалась умова:

(10.20)

Так, для прикладу (10.1) маємо:

значить, на кривій (10.17) функціонал (10.15) досягає мінімуму.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 531; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.