Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Спецификация переменных в уравнениях регрессии




2.1. Эконометрические модели: общая характеристика, различия статистического и эконометрического подхода к моделированию.

Математические модели широко применяются в бизнесе, экономике, общественных науках, исследовании экономической активности и даже в исследовании политических процессов.

Математические модели полезны для более полного понимания сущности происходящих процессов, их анализа. Модель, построенная и верифицированная на основе (уже имеющихся) значений объясняющих переменных, может быть использована для прогноза значений зависимой переменной в будущем или для других наборов значений объясняющих переменных.

Можно выделить три основных класса моделей, которые применяются для анализа и/или прогноза:

1. Модели временных рядов представля­ют собой зависимость результативной перемен­ной от переменной времени или переменных, от­носящихся к другим моментам времени.

Модели временных рядов, в которых резуль­тативная переменная зависит от времени:

1) модель тренда (зависимость результатив­ной переменной от трендовой компоненты);

,

где - временной тренд заданного параметрического вида (например, линейный ),

- случайная стохастическая компонента.

 

2) модель сезонности (зависимость результа­тивной переменной от сезонной компоненты);

,

где - периодическая (сезонная) компонента,

- случайная стохастическая компонента.

 

3) модель тренда и сезонности.

 

(аддитивная)

 

(мультипликативная)

Модели временных рядов, в которых результативная переменная зависит от переменных, датированных другими моментами времени:

1) объясняющие вариацию результативной переменной в зависимости от предыдущих значений факторных переменных — модели с распределенным лагом;

2) объясняющие вариацию результативной переменной в зависимости от предыдущих значений результативных переменных — мо­дели авторегрессии;

3) объясняющие вариацию результативной переменной в зависимости от будущих значе­ний факторных или результативных перемен­ных — модели ожидания.

Модели временных рядов могут быть построе­ны по стационарным и нестационарным вре­менным рядам. Для стационарного временно­го ряда характерны постоянные во времени средняя, дисперсия и автокорреляция.

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 711; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.