Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

ЗУ типа FRАМ (ферроэлектрические)




Перспективные запоминающие устройства (FRАМ, РFRАМ, МRАМ, OUM)

Память типа Вulk Еrаsе

Память типа Вulk Еrаsе фирмы Intel, наиболее известной среди разработчиков Флэш-памяти, имеет время записи байта около 10 мкс, допускает до 105 циклов стирания, напряжение программирования для нее составляет 12 В ± 5%, ток активного режима около 10 мА, в режиме покоя около 50 мкА. Время доступа при чтении равно приблизительно 100 нс, время стирания и время программирования всего кристалла составляет 0,6...4 с для кристаллов емкостью 256 Кбит...2 Мбит.

В отличие от традиционного управления схемами памяти с помощью адрес­ных и управляющих сигналов. Флэш-память имеет дополнительное управление швами-командами, записываемыми процессором в специальный регистр, функционирующий только при высоком уровне напряжения на выводе мик­росхемы, обозначаемом UPP (напряжении программирования). При отсутст­вии такого уровня UPP схема работает только как память для чтения под управлением традиционных сигналов, задающих операции чтения. снижения мощности, управления третьим состоянием и выдачи идентификатора.

Успехи создания ЗУ на основе полупроводниковой технологии не снимают проблемы дальнейшего совершенствования микросхем памяти. Чтобы при­биться к идеалу, желательно к таким свойствам ЗУ, как высокая емкость, быстродействие и малая потребляемая мощность, добавить и энергонезависимость, которой современные ОЗУ не обладают. Если к такому комплексу качеств прибавить и низкую стоимость, то получатся ЗУ, близкие к идеалу. Пути приближения к идеалу включают в себя попытки использования не­скольких новых для технологии ЗУ физических явлений - ферроэлектрических, магниторезистивных, связанных с изменением фазовых состояний ма­ралов и др.

 

В ферроэлектрических FRАМ (Ferroelectric RАМ) основой запоминающего элемента служит материал, в кристаллическойструктуре которого имеется бистабильный атом. Занимая одно из двух возможных пространственных положений ("верхнее" или "нижнее"), этот атом создает вферроэлектриче ском материале внутренние диполи того или иного знака (спонтанная поля ризация).

С п омощью электрического поля можно придать внутреннему диполю тот или иной знак. Под воздействием внешнего электрического поля и при темпера туре не выше определенной (связанной с точкой Кюри) материал поляри зуется, делали выстраиваются упорядоченное состояние материала может отобра­жать двоичные данные 0 и 1. Зависимость поляризации Р от напряжения U имеет петлю гистерезиса, показанную на рис. 4.9. а Через Uс на рисунке обозначены коэрцитивные напряжения, через PR - остаточные поляризации, до сохраняются после снятия электрических полей.

Если бы вместо ферроэлектрического конденсатора был включен обычный, соединенный не с Рlatе-линией, в с обшей точкой схемы (схемной землей), то получился бы запоминающий элемент обычного динамического ЗУ, и подключение конденсатора через ключевой транзистор к линии записи/считывания ЛЗС позволяло бы считывать хранимую элементом информацию (ЛВ – линия выборки), т.к. в зависимости от заряженности или разряженности конденсатора при его подключении по-разному изменялось бы напряжение на линии ЛЗС. Здесь же нужно выявить не наличие или отсутствие заряда конденсатора, а знак поляризации запоминающего элемента. Простым подключением ферроэлектрического конденсатора к линии ЛЗС этого не определить. Поэтому после отпирания транзистора выборки на Plate-линию подается импульс длительностью около 10 нс. Если этот импульс вызовет переполяризацию элемента, то через него пройдет большой ток, который сможет ощутимо изменить напряжение на линии ЛЗС (на ее емкости, изображенной на рисунке 4.9 б штриховыми линиями). Если же знак поляризации был иным и переполяризации элемента не будет, то ток через него будет малым и не сможет заметно повлиять на потенциал линии ЛЗС.

 

а б

Рисунок 4.9 – Петля гистерезиса ферроэлектрического материала (а) и схема запоминающего элемента FRAM (б)

 

После пропускания импульса от Plate-линии подается питание на усилитель считывания УСч, логическое состояние которого определяется тем, смогла ли линия ЛЗС зарядиться выше или ниже опорного напряжения, т.е. в конечном счете знаком поляризации запоминающего элемента. При этом выходной сигнал усилителя фиксируется (защелкивается) для обратной подачи на разрядную линию и возвращения фотоэлектрического конденсатора в его первоначальное состояние после проведенной разрушающей операции чтения. Такая обратная перезапись информации занимает время около 10-20 нс и сохраняет считанные данные. Процессы в ЗУ синхронизированы с фронтами управляющих импульсов.

Рассмотренный запоминающий элемент называют элементом типа 1Т/1С, т.к. в его схеме используется один транзистор и один фотоэлектрический конденсатор. Существуют также элементы типа 2Т/2, похожие на сдвоенный элемент 1Т/1С. В таких элементах две ячейки 1Т/1С программируются в противоположных направлениях и в элементе имеются две разрядные линии с взаимоинверсными сигналами. Используется дифференциальный канал для восприятия сигналов, а это повышает помехоустойчивость ЗУ и улучшает также некоторые другие параметры.

Достоинства FRAM: быстрые запись и чтение, практически неограниченное число циклов чтения/записи, малые напряжения питания и потребляемая мощность, компактность запоминающего элемента (площадь его соизмерима с площадью обычного запоминающего элемента DRAM), высока радиационная стойкость, энергонезависимость.

Такой набор достоинств позволяет FRAM выступить в роли конкурента как по отношению к динамическим ОЗУ, не обладающим энергонезависимостью, так и по отношению к EEPROM и Flash, не обеспечивающим быструю запись данных. В настоящее время ЗУ типа FRAM уже выпускаются рядом фирм (Ramtron International, Samsung, NEC и др.)




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 377; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.