Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Силы, действующие на дислокацию




Следовательно, дислокация не может двигаться в кристалле быстрее звука

 

 

Движение дислокации вызывает пластическую деформацию кристалла, т.е. дислокация совершает работу. Учитывая это, можно оперировать представлением о действии некоторой силы на линию дислокации как на самостоятельный физический объект. Фактически же дислокация — не частица, не тело, а особая конфигурация в расположении атомов. Следовательно, ниже речь идет о силе, действующей на эту конфигурацию, и такую силу не следует смешивать с силами, действующими на атомы. Это наглядно видно из рассмотрения атомного механизма перемещения винтовой дислокации на рис. 32.

В общем случае на дислокацию действуют силы разного происхождения: внешние силы, приложенные к поверхности кристалла, внутренние силы от действия поля напряжений вокруг соседних дислокаций, инородных атомов и других несовершенств.

Ниже рассматривается случай действия только внешних сил (внутренние напряжения от других дефектов отсутствуют). Основная идея расчета состоит в следующем. Кристалл от внешнего источника получает дополнительную энергию в виде механической работы А. Вся эта энергия переходит в работу A д, совершаемую силой F д, действующей на дислокацию (A д = A).

Рассмотрим краевую дислокацию на рис. 21 и 26. Однородные касательные напряжения τ от внешней силы F, совершив сквозной сдвиг верхней части кристалла относительно нижней на величину b, произведут работу A = Fb. Так как касательные напряжения действуют на площади l 1/ l 2, где l 1 — длина и l 2 — ширина кристалла, то сила, действующая в_ этой плоскости, Fl 1 l 2 и А= bτ l 1 l 2 .

Нашей целью является вычисление силы f, действующей на единицу длины дислокации. Сила, действующая на всю дислокацию, F д = f l 2.

При перемещении дислокации через всю длину кристалла l 1 работа этой силы A д = F д l 1= f·l 1 l 2. Она, как уже указывалось, равна затраченной работе A. Следовательно, f·l 1 l 2 = b·τ l 1 l 2. Откуда




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 287; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.