КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Погружным центробежным электронасосом
Электронасосов в нефтяных скважинах Особенности работы погружных центробежных Продукция добывающих скважин в большинстве случаев представляет смесь жидкости и свободного газа, причем вязкость жидкости может существенно отличаться от вязкости воды. В этом случае изменение внешних параметров работы центробежного насоса может существенно отличаться от их изменения при действии вязкости жидкости или свободного газа. При работе в реальных скважинах установка ЭЦН является одним из взаимосвязанных элементов сложной системы, в частности, самой скважины и пласта, а также подъемника и системы сбора продукции. Каждый из этих элементов имеет собственные законы работы, без учета действия которых невозможно установить оптимальный режим работы всей системы. Поэтому ниже рассмотрим некоторые особенности работы УЭЦН в реальной добывающей системе. 6.5.1. Определение создаваемого давления (напора) Для определения напора центробежного насоса Н н при отборе из скважины дебита Q А. А. Богданов рекомендует следующую формулу: (6.1) где Hст — статический уровень, м; Hг — разность геодезических отметок устья скважины и сепарационной установки (трапа), м; Н т — избыточное давление в трапе, выраженное в м столба жидкости, м; К пр — коэффициент продуктивности скважины, м3/(сут·Па); Q — производительность скважины, равная подаче насоса, м3/сут; ρ — плотность добываемой жидкости, кг/м3; g — ускорение силы тяжести, м/с2; r т — коэффициент гидравлического сопротивления подъемника и наземных коммуникаций. Пренебрегая вследствие малости величинами Hг и Н т и потерями на трение в наземных коммуникациях, уравнение (6.1) можно переписать в следующем виде: (6.2) где λ — коэффициент гидравлических сопротивлений при движении жидкости в подъемнике; Нсп — длина спуска насоса (длина подъемника), м; d — внутренний диаметр подъемника, м. При откачке ньютоновских жидкостей коэффициент гидравлических сопротивлений рекомендуется рассчитывать по известным формулам трубной гидравлики; в случае движения смеси нефти и воды (эмульсии) λ предлагается определять приближенно, исходя из анализа промысловых наблюдений. Неточность данной зависимости для вычисления напора насоса связана не только с приближенным вычислением λ, но и с неучетом важнейшего физического явления движения в подъемнике вязкой газожидкостной смеси с переменным газосодержанием и проявлением газлифтного эффекта (неучет высоты подъема жидкости за счет ее газирования). Экспериментальные исследования в добывающих скважинах показали, что неучет газлифтного эффекта приводит к существенным ошибкам в определении давления, создаваемого насосом (напора насоса). Выведем формулу создаваемого погружным центробежным насосом давления (напора) с учетом газлифтного эффекта. В основу положим очевидное соотношение: (6.3) где Р н — давление, создаваемое насосом, Па; Рвык — давление на выкиде насоса, Па; Р пр — давление на приеме насоса, Па. Давление на приеме насоса можно записать в следующем виде: (6.4) где Рзаб — забойное давление, Па; L c — глубина скважины, м; Нсп — глубина спуска насоса, м; ρ′см — средняя плотность смеси в интервале «забой—прием», кг/м3. Для заданной нормы отбора жидкости Q забойное давление определяется по индикаторной диаграмме скважины, либо рассчитывается по уравнению притока: (6.5) где Р пл — пластовое давление, Па; К — коэффициент пропорциональности в уравнении притока; п — показатель режима фильтрации продукции. Подставляя (6.5) в (6.4), получим: (6.6) Давление на выкиде погружного центробежного насоса определяется суммарными потерями энергии в нагнетательном трубопроводе и может быть записано так: (6.7) где ρсм.т — плотность газожидкостной смеси в колонне НКТ (подъемнике), кг/м3; Ру — противодавление на устье скважины в колонне НКТ, Па; Δ Р тр, Δ Р мс, Δ Р ин — соответственно потери давления на преодоление трения, на местных сопротивлениях и инерционные, Па. Слагаемыми Δ Р мс и Δ Р ин можно пренебречь. Ввиду их малого значения потери на трение в области однофазного движения вычисляются по известной зависимости: (6.8) где Q1 — подача насоса, м3/с, ρж — плотность жидкости, движущейся в подъемнике с внутренним диаметром d, кг/м3. Перепишем выражение (6.7) с учетом вышеизложенного: (6.9) Входящая в зависимость (6.9) плотность газожидкостной смеси ρсм.Т рассчитывается для конкретных условий движения. Другим методом определения Р ВЫК является следующий. Заменим суммарные потери энергии через приращение фактической плотности газожидкостной смеси ρсм.·Т на величину Δρ, равную: (6.10) где ρφсм.т — фиктивная плотность газожидкостной смеси в подъемнике, включающая, кроме потерь давления от гидростатического столба смеси, и суммарные потери при этом: (6.11) Подставляя выражение (6.11) в (6.7), получим: (6.12) Соотношение Р вык и Р у обусловливает степень разгазирования жидкости с учетом всех потерь в подъемнике. С момента начала выделения свободного газа в подъемнике газонасыщенность смеси увеличивается за счет расширения и дополнительного выделения газа при снижении давления до величины Р у, что приводит к снижению плотности жидкости ρж до величины ρсм т, а с учетом компенсации потерь энергии в подъемнике — до величины ρφсм.т. Подставляя выражения (6.6) и (6.12) в (6.3), получим: (6.13) Данная зависимость и является искомой для вычисления давления, создаваемого погружным центробежным электронасосом, и учитывает газлифтный эффект Н' гэ: (6.14) где Н' гэ — газлифтный эффект, заниженный на сумму выраженную в метрах, м; Н гэ — реальный газлифтный эффект, м. Для сравнения и оценки конечных результатов, получаемых при использовании формул (6.2) и (6.13), проведены расчеты для скважин 395 и 696 Туймазинского нефтяного месторождения, в которых были проведены промысловые экспериментальные работы. Краткая характеристика этих скважин приведена в табл. 6.1. Таблица 6.1 Характеристика скважин, оборудованных УЭЦН
Таблица 6.2 Результаты расчета напора насосов и газлифтного эффекта в скв. 395 и 696
В табл. 6.2 приведены результаты расчетов по формулам (6.2) и (6.13), а также представлены экспериментально определенные П.Д. Ляпковым высоты подъема жидкости за счет работы газа (газлифтные эффекты Н' гэ). Результаты проведенных расчетов показали, что зависимость (6.2) не может быть рекомендована к использованию, т.к. ошибки в расчете напора могут превышать 50%. Газлифтный эффект по зависимости (6.14) в сравнении с экспериментально определенным не превышает для скв. 395 – 3 %, а для скв. 696 - 5 %. Для оценки средней ошибки расчета газлифтного эффекта, а следовательно, и напора насоса воспользуемся экспериментальными данными П.Д. Ляпкова по этим скважинам на различных режимах работы насосов и расчетами по (6.14), которые представлены в табл. 6.3. Таблица 6.3 Сопоставление экспериментальных и расчетных значений газлифтного эффекта
Таким образом, средняя ошибка расчета Н'гэ, по (6.14) составляет около 5 %, что приемлемо для нефтепромысловой практики. 6.5.2. Методика определения давления на приеме
Дата добавления: 2014-01-07; Просмотров: 883; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |