КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Матрица данных
КОРРЕЛЯЦИОННЫЙ И РЕГРЕССИОННЫЙ АНАЛИЗ
Многие объекты исследования характеризуются множеством параметров, и по результатам наблюдения за их функционированием формируются многомерные совокупности (матрицы) ЭД
(7.1)
Строки такой матрицы соответствуют результатам регистрации всех наблюдаемых параметров объекта в одном эксперименте, а столбцы содержат результаты наблюдений за одним параметром (фактором, вариантой) во всех экспериментах. Обозначим количество параметров через m(m>1), а количество наблюдений – через n. В матрице элемент хij соответствует значению j -й варианты в i -м наблюдении. Матрица, вообще говоря, может содержать пустые значения некоторых элементов, например, из-за пропусков в регистрации значений параметров. В многомерном анализе желательно устранить пропущенные значения. Для этого существуют специальные приемы, в частности, вычеркивание соответствующих строк матрицы или занесение средних значений вместо отсутствующих. В дальнейшем будем считать, что матрица не содержит пустых элементов, а параметры объекта характеризуются непрерывными случайными величинами. Методы обработки матрицы ЭД основаны на следующем предположении: если объект подвергнуть новому обследованию и получить, вообще говоря, другую матрицу данных, то после ее обработки с помощью тех же методов будут получены результаты, близкие к результатам обработки первой матрицы. Данное предположение основано на статистической гипотезе формирования матрицы ЭД. Матрица порождается случайным образом в соответствии с определенной вероятностной закономерностью, а именно: в m -мерном пространстве параметров существует некоторое (пусть и неизвестное) распределение вероятностей, и каждая строка матрицы появляется в соответствии с этим распределением независимо от появления других строк. Каждый столбец матрицы представляет собой случайную выборку значений одного параметра объекта. Указанное предположение означает, во-первых, что оценки моментов и параметров распределения, вычисленные по выборке, будут близки к истинным значениям, во-вторых, значения непрерывных функций, построенных по этим оценкам, будут близки к значениям функций, построенным по истинным значениям параметров. Таким образом, объектом исследования в многомерном анализе является многомерная случайная величина, представленная выборкой конечного объема. К такой выборке применимы все методы и оценки, рассмотренные при обработке одномерных ЭД. Конечно, приведенные суждения не являются доказательством допустимости применения рассматриваемых методов, но вполне подтверждаются практикой. Параметры, характеризующие объект исследования, имеют разныйфизический смысл, и матрица данных существенно изменяется, если изменяются шкалы, в которых измеряются те или иные параметры. Матрицу данных еще до проведения анализа целесообразно привести к стандартному виду, т.е. стандартизовать значения вариант (напомним, что среднее значение стандартизованной варианты равно нулю, дисперсия – единице). В тех случаях, когда все варианты измеряются в одной шкале, это преобразование все-таки желательно, ибо оно упрощает последующие преобразования. Стандартизованную матрицу будем обозначать через U. Переход от исходной к стандартизованной матрице осуществляется следующим образом. 1. По каждой варианте вычисляются оценки: · математического ожидания ; · дисперсии .
2. Вычисляются элементы стандартизованной матрицы Элементы матрицы U являются безразмерными величинами. Именно матрица U будет являться объектом последующей обработки.
Дата добавления: 2014-01-07; Просмотров: 252; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |