КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интегральная и дифференциальная форма закона полного тока
Количественная связь между циркуляцией вектора
Линейный интеграл от напряженности магнитного поля вдоль любого замкнутого контура равен полному току, пронизывающему замкнутый контур. Интегральную форму закона полного тока применяют, когда может быть использована симметрия в поле. Определим напряженность поля в некоторой точке А в поле уединенного прямого провода с током I (рис. 17.3).
Рис. 17.3. к определению напряженности поля уединенного провода Проведем через точку А окружность радиусом R в плоскости, перпендикулярной оси провода, так что центр ее находится на этой оси. В силу симметрии напряженность поля во всех точках окружности численно одна и та же. Направление напряженности совпадает с касательной к окружности:
Если какое-либо поле имеет сложный характер и напряженность H нельзя вывести из-под знака интеграла, то использовать закон полного тока в интегральной форме так просто не удается. Соотношение (17.3) пригодно для контура любых размеров, в том числе и для весьма малого. Выделим в какой-либо среде небольшой контур и составим вдоль него циркуляцию вектора
Рис. 17.4. К нахождению циркуляции вектора Если площадь мала, то можно полагать, что плотность тока
Разделим обе части равенства на Ds и устремим Ds к нулю. Возьмем предел полученного соотношения:
Если площадь
Формула (17.6) называется законом полного тока в дифференциальной форме. Ротор – это функция, характеризующая поле в рассматриваемой точке, в отношении способности к образованию вихрей. Раскрытие функции ротора в декартовой системе координат мы рассмотрели в параграфе 14.1.3 формулы (12.17), (12.18) и (12.19).
Дата добавления: 2014-01-07; Просмотров: 3135; Нарушение авторских прав?; Мы поможем в написании вашей работы! |