Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Особенности получения инструментальных материалов на основе алмаза и кубического нитрида бора

Сверхтвердые синтетические поликристаллические инструментальные материалы

 

Сверхтвердыми принято считать материалы, имеющие микротвердость, выше микротвердости природного корунда (Al2O3) (т.е. твердость по Виккерсу более 20 ГПа). Материалы, твердость которых выше, чем металлов (т.е. 5-20 ГПа) можно рассматривать как высокотвердые. Из природных материалов к сверхтвердым относится только алмаз. В 2000 году в ИСМ АН Украины прямым превращением графитоподобного твердого раствора BN-C при давлении 25 ГПа и температуре 2100К была получена новая сверхтвердая фаза, кубический карбонитрид бора (BC2N), получившим обозначение КАНБ. Твердость и модуль упругости КАНБ является промежуточным между алмазом и кубическим нитридом бора, что делает его вторым по твердости материалом после алмаза, и открывает новые перспективы.

 

 

Инструментальная промышленность выпускает синтетические сверхтвердые материалы на основе алмаза и кубического нитрида бора (КНБ).

Природный алмаз – самый твердый материал на Земле, который издавна применяется в качестве режущего инструмента. Принципиальное отличие монокристаллического природного алмаза от всех других инструментальных материалов, имеющих поликристаллическое строение, с точки зрения инструментальщика состоит в возможности получения практически идеально острой и прямолинейной режущей кромки. Поэтому в конце XX века с развитием электроники, прецизионного машиностроения и приборостроения применение резцов из природных алмазов для микроточения зеркально чистых поверхностей оптических деталей, дисков памяти, барабанов копировальной техники и т.п. возрастает. Однако из-за дороговизны и хрупкости природные алмазы не применяются в общем машиностроении, где требования к качеству обработки деталей не столь высоки.

Потребность в сверхтвердых материалах привела к тому, что в 1953-1957 годах в Швеции (фирма ASEA) и США («Дженерал электрик») и в 1959 году в СССР (Институт физики высоких давлений) методом каталитического синтеза, при высоких статических давлениях, из гексагональных фаз графита (С) и нитрида бора (BN), были получены мелкие частицы кубических фаз синтетического алмаза и нитрида бора.

Теория синтеза алмаза впервые была предложена О.И.Лейпунским (1939г.), который на основе экспериментальных данных об обратном переходе алмаза в графит, сформулировал условие перехода графита в алмаз и рассчитал кривую равновесия графит – алмаз при высоких давлениях. Синтез алмаза из графита при высоких давлениях (более 4,0 ГПа) и температурах (свыше 1400К) осуществляется в присутствии металлических растворителей углерода (Ni, Fe, Co и др.).

Кубический нитрид бора (КНБ) сверхтвердый материал не имеющий природного аналога. Впервые кубический нитрид бора был синтезирован в 1956 году (фирмой «Дженерал Электрик») при высоких давлениях (свыше 4,0 ГПа) и высокой температуре (свыше 1473К) из гексагонального нитрида бора в присутствии щелочных и щелочноземельных металлов (свинец, сурьма, олово и др.). Кубический нитрид бора, выпускаемый фирмой «Дженерал Электрик» был назван Боразоном.

Синтетические монокристаллы алмаза и КНБ, полученные искусственным путем имеют очень малые размеры, поэтому для использования в качестве инструментального материала их соединяют (сращивают) в поликристаллы.

Поликристаллические композиционные материалы на основе алмаза и кубического нитрида бора появились на рубеже 60-70 годов. Характерной особенностью таких материалов является наличие жесткого каркаса из сросшихся зерен алмаза или КНБ. Спекание порошков алмаза и КНБ, как правило, осуществляется в области термодинамической стабильности алмаза и КНБ при давлении 5…9 ГПа и температурах 1500…2000К. Обычно спекание поликристаллических композиционных материалов осуществляют в присутствии активирующих процесс спекания добавок, для алмазных порошков – кобальт или кремний, а для порошков КНБ – алюминий (рис. 2.4). Составляющие каркас зерна это в сущности, монокристаллы алмаза, обладающие рядом уникальных физико-механических и теплофизических свойств. Насколько эти свойства реализуются в поликристалле, зависит от степени их взаимосвязи.

Технология производства двухслойных пластин, состоящих из верхнего рабочего слоя – сверхтвердого материала скрепленного с твердосплавной пластиной. Спеканием двухслойной пластины с алмазным рабочим слоем получают АТП, а с рабочим слоем из КНБ – КТП. Физико-механические свойства этих материалов приведены в табл. 2.14, 2.15

 

 

Рисунок 2.4 – Структура алмазного композиционного поликристаллического материала

 

Управление процессом формирования структуры поликристалла открывает возможности создавать в зависимости от областей применения материалы с требуемым сочетанием твердости, теплопроводности, прочности, электросопротивления. Поликристаллические сверхтвердые материалы (ПСТМ) по своим физико-механическим свойствам могут быть близкими к монокристаллам, а по некоторым и превосходят их. Так, большинство алмазных поликристаллов обладает изотропией (однородностью по различным направлениям) свойств, отличаются высокой износостойкостью и превосходят монокристаллы по трещиностойкости.

 

 

<== предыдущая лекция | следующая лекция ==>
Режущая керамика | Инструментальные материалы с износостойким покрытием
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 798; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.