Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Диспетчеризация и приоритезация прерываний в ОС




Программные прерывания

 

Программное прерывание реализует один из способов перехода на подпрограмму с помощью специальной инструкции процессора, такой как INT в процессорах Intel Pentium, trap в процессорах Motorola, syscall в процессорах MIPS или Ticc в процессорах SPARC. При выполнении команды программного прерывания процессор отрабатывает ту же последовательность действий, что и при возникновении внешнего или внутреннего прерывания, но только происходит это в предсказуемой точке программы — там, где программист поместил данную команду.

Практически все современные процессоры имеют в системе команд инструкции программных прерываний. Одной из причин появления инструкций программных прерываний в системе команд процессоров является то, что их использование часто приводит к более компактному коду программ по сравнению с использованием стандартных команд выполнения процедур. Это объясняется тем, что разработчики процессора обычно резервируют для обработки прерываний небольшое число возможных подпрограмм, так что длина операнда в команде программного прерывания, который указывает на нужную подпрограмму, меньше, чем в команде перехода на подпрограмму. Например, в процессоре х86 предусмотрена возможность применения 256 программ обработки прерываний, поэтому в инструкции INT операнд имеет длину в один байт (а инструкция INT 3, которая предназначена для вызова отладчика, вся имеет длину один байт). Значение операнда команды INT просто является индексом в таблице из 256 адресов подпрограмм обработки прерываний, один из которых и используется для перехода по команде INT. При использовании команды CALL потребовался бы уже не однобайтовый, а двух- или четырехбайтовый операнд. Другой причиной применения программных прерываний вместо обычных инструкций вызова подпрограмм является возможность смены пользовательского режима на привилегированный одновременно с вызовом процедуры — это свойство программных прерываний поддерживается большинством процессоров.

В результате программные прерывания часто используются для выполнения ограниченного количества вызовов функций ядра операционной системы, то есть системных вызовов.

 

 

Операционная система должна играть активную роль в организации обработки прерываний. Прерывания выполняют очень полезную для вычислительной системы функцию — они позволяют реагировать на асинхронные но отношению к вычислительному процессу события. В то же время прерывания создают дополнительные трудности для ОС в организации вычислительного процесса. Эти трудности связаны с непредвиденными переходами управления от одной процедуры к другой, возникающими в результате прерываний от контроллеров внешних устройств. Возможно также возникновение в непредвиденные моменты времени исключений, связанных с ошибками во время выполнения инструкций. Усложняют задачу планирования вычислительных работ и запросы на выполнение системных функций (системные вызовы) от пользовательских приложений, выполняемые с помощью программных прерываний. Сами модули ОС также часто вызывают друг друга с помощью программных прерываний, еще больше запутывая картину вычислительного процесса.

Операционная система не может терять контроль над ходом выполнения системных процедур, вызываемых по прерываниям. Она должна упорядочивать их во времени так же, как планировщик упорядочивает многочисленные пользовательские потоки. Кроме того, сам планировщик потоков является системной процедурой, вызываемой по прерываниям (аппаратным — от таймера или контроллера устройства ввода-вывода, или программным — от приложения или модуля ОС). Поэтому правильное планирование процедур, вызываемых по прерываниям, является необходимым условием правильного планирования пользовательских потоков. В противном случае в системе могут возникать, например, такие ситуации, когда операционная система будет длительное время заниматься не требующей мгновенной реакции задачей управления стримером, архивирующим данные, в то время, когда высокоскоростной диск будет простаивать и тормозить работу многочисленных приложений, обменивающихся данными с этим диском. Еще один пример такой ситуации иллюстрирует рис. 4.12. В данном случае обработчик прерываний принтера блокирует на длительное время обработку прерывания от таймера, в результате чего системное время на некоторое время «замирает» и поток 2, критически важный для пользователя, не получает управление в запланированное время. Остроту проблемы несколько смягчает то обстоятельство, что во многих случаях обработка прерывания связана с выполнением всего нескольких операций ввода-вывода и поэтому имеет очень небольшую продолжительность. Тем не менее ОС всегда должна контролировать ситуацию и выполнять критичную работу вовремя, а не полагаться на волю случая.

Для упорядочения работы обработчиков прерываний в операционных системах применяется тот же механизм, что и для упорядочения работы пользовательских процессов — механизм приоритетных очередей. Все источники прерываний обычно делятся на несколько классов, причем каждому классу присваивается приоритет. В операционной системе выделяется программный модуль, который занимается диспетчеризацией обработчиков прерываний. Этот модуль в разных ОС называется по-разному, но для определенности будем его называть диспетчером прерываний.

При возникновении прерывания диспетчер прерываний вызывается первым. Он запрещает ненадолго все прерывания, а затем выясняет причину прерывания. После этого диспетчер сравнивает назначенный данному источнику прерывания приоритет и сравнивает его с текущим приоритетом потока команд, выполнявмого процессором. В этот момент времени процессор уже может выполнять инструкции другого обработчика прерываний, также имеющего некоторый приоритет. Если приоритет нового запроса выше текущего, то выполнение текущего обработчика приостанавливается и он помещается в соответствующую очередь обработчиков прерываний. В противном случае в очередь помещается обработчик нового запроса.

Рис. 4.12. Неупорядоченная обработка прерываний

ПРИМЕЧАНИЕ

Приоритет обработчиков прерываний не совпадает в общем случае с приоритетом потоков, выполняемых в обычной последовательности, определяемой планировщиком потоков. По отношению к обработчикам прерываний любой поток, который назначен на выполнение планировщиком, имеет самый низкий приоритет, так что любой запрос на прерывание всегда может прервать выполнение этого потока.

 

Функции централизованного диспетчера прерываний на примере Windows NT

Некоторые процессоры или контроллеры прерываний компьютера на аппаратном уровне поддерживают приоритезацию запросов на прерывание. Например, в процессорах MIPS существует несколько уровней аппаратных запросов на прерывания и несколько уровней программных запросов. В процессоре имеется внутренняя переменная, называемая уровнем прерываний процессора. Прерывание происходит только в том случае, когда уровень запроса на прерывание выше текущего уровня прерываний процессора. Имеется также привилегированная инструкция, с помощью которой код ядра ОС может изменить уровень прерываний процессора. Необработанные запросы на прерывания должны храниться в контроллерах устройств, чтобы не потеряться и дождаться обслуживания при снижении уровня прерывания процессора, когда он закончит выполнение более срочных работ. При работе на такого рода аппаратной платформе ОС может пользоваться встроенными в процессор средствами приоритезация прерываний для упорядочивания процесса их обработки. Однако такие средства имеются не у всех процессоров, например процессоры семейства Pentium не имеют встроенной переменной для фиксации уровня прерываний исполняемого кода — аппаратные прерывания могут быть либо полностью запрещены, либо полностью разрешены (а наиболее критичные нельзя запретить вовсе).

Для исключения зависимости от аппаратной платформы в некоторых ОС вводится собственная программная система приоритетов прерываний. Примером такой ОС может служить Windows NT.

Диспетчер прерываний Windows NT (так называемый Trap Handler) работает с программной моделью прерываний, единой для всех аппаратных платформ, поддерживаемых Windows NT. Все источники прерываний (аппаратных и программных, а также некоторых важных для системы исключений, например исключения по ошибке шины) делятся на несколько классов, и каждому классу присваивается уровень запроса прерывания — Interrupt Request Level, IRQL Этот уровень и представляет приоритет данного класса. Операционная система программным способом поддерживает внутреннюю переменную, называемую IRQL выполняемого процессором кода, которая по назначению соответствует уровню прерывания процессора. Если процессор, на котором работает ОС, поддерживает такую переменную, то она используется и IRQL выполняемого кода отображается на нее, в противном случае соответствующие функции процессора эмулируются программно.

Общая схема планирования обработки прерываний выглядит в Windows NT следующим образом. При поступлении в процессор сигнала запроса на прерывание/исключение вызывается диспетчер прерываний, который запоминает информацию об источнике прерывания и анализирует его приоритет. Если приоритет запроса ниже или равен IRQL прерванного кода, то обслуживание этого запроса откладывается и данные о запросе помещаются в соответствующую очередь запросов, после чего происходит быстрый возврат к прерванному обработчику прерываний. По завершении обработки высокоприоритетного прерывания управление возвращается диспетчеру прерываний, который просматривает очереди отложенных прерываний и выбирает из них наиболее приоритетное. При этом уровень IRQL снижается до уровня выбранного прерывания.

Если же запрос имеет более высокий приоритет, чем IRQL текущего кода, то текущий обработчик прерываний вытесняется и ставится в очередь, соответствующую его значению IRQL, а управление передается новому обработчику в соответствии с IRQL запроса. После этого уровень IRQL процессора делается равным уровню IRQL принятого на выполнение запроса.

Таким образом, запрос на прерывание принимается диспетчером прерываний всегда независимо от текущего уровня IRQL выполняемого кода, но диспетчер прерываний не передает его на обработку соответствующей процедуре обработки прерываний, а помещает в программную очередь запросов, если в данный момент выполняется более приоритетная процедура обработки прерываний. Операционная система имеет полный контроль над ситуацией, не позволяя контроллерам устройств ввода-вывода принимать решения о ходе вычислительного процесса.

В Windows NT низший уровень IRQL соответствует обычным потокам, назначаемым на выполнение диспетчером потоков (рис. 4.13). Это является некоторым допущением, так как код потоков начинает выполняться процессором не в результате запроса на прерывание, но это допущение хорошо работает, поскольку позволяет любому «настоящему» запросу прерывать код обычного потока.

Рис. 4.13. Диспетчеризация прерываний в Windows NT

Высший уровень в иерархии IRQL отводится таким важным событиям, как исключение по ошибке шины и другим тяжелым аппаратным сбоям, далее располагаются запрос на прерывание по сбою питания и запрос на межпроцессорное прерывание.

Прерывания от внешних устройств занимают промежуточные уровни IRQL. Конкретное соотношение между приоритетами внешних устройств определяется приоритетами, задаваемыми аппаратной платформой, например уровнем IRQ шины PCI, назначенным устройству.

Особую роль в работе вычислительной системы играет системный таймер: на основании его прерываний обновляются системные часы, определяющие очередной момент вызова планировщика потоков, момент выдачи управляющего воздействия потоком реального времени и многое другое. Ввиду важности немедленной обработки прерываний от таймера, ему в Windows NT дан весьма высокий уровень приоритета — более высокий, чем уровень любого устройства ввода-вывода.

В системе очередей диспетчера прерываний несколько очередей отведено для обслуживания отложенных программных прерываний.

Программные прерывания, обслуживающие системные вызовы от приложений, выполняются с низшим уровнем приоритета, что соответствует концепции продолжения одного и того же процесса, но только в системной фазе, при выполнении системного вызова. А вот для программных прерываний, исходящих от модулей ядра ОС, отводится более высокий уровень запросов, имеющий двойное название «диспетчерский/DPO.

Этот уровень приоритета называется диспетчерским, потому что именно в эту очередь помещаются программные запросы, вызывающие диспетчер потоков. Часто при обработке высокоприоритетных прерываний возникает ситуация, требующая перепланирования потоков. Например, при обработке очередного прерывания от таймера нужно проверить, не исчерпан ли квант, выделенный текущему потоку. Другим примером может служить обработка прерывания от контроллера диска после завершения дисковой операции, которую могут ждать несколько потоков. Во всех таких ситуациях в Windows NT планировщик/диспетчер вызывается высокоуровневыми процедурами ядра не прямо посредством вызова процедуры, а косвенно, с помощью программного прерывания. Это дает возможность отделить короткую, но требующую быстрой реакции системы процедуру обслуживания высокоприоритетного прерывания (например, наращивание системных часов) от менее критичной операции перепланирования пользовательских потоков. Прямой вызов планировщика/диспетчера потоков такой возможности бы не дал, и критичные запросы прерывания от контроллеров устройств ввода-вывода вынуждены были бы ждать, пока отработает планировщик. При этом планировщик, возможно, выбрал бы для выполнения другой поток, если бы работал после процедур обслуживания аппаратных прерываний, так как он получил бы свежие сведения о завершении некоторых операций ввода-вывода. Помещение вызова планировщика потоков в очередь позволяет выполнять его только в тех ситуациях, когда в системе отсутствуют ожидающие аппаратные запросы прерываний.

Наличие отдельного уровня для планировщика/диспетчера потоков не означает того, что он всегда вызывается с помощью программных прерываний. В тех случаях, когда он вызывается из кода, имеющего низкий уровень запроса на прерывание (если он выполняется, значит, высокоприоритетные запросы на прерывание отсутствуют), планировщик может быть вызван быстрее путем непосредственного внутрисегментного вызова процедуры. Например, системному вызову, переводящему поток по собственному желанию в состояние ожидания, нет смысла вызывать планировщик потоков по программному прерыванию.

Второе название диспетчерского уровня, DPC, являясь аббревиатурой от Deffered Procedure Call (вызов отложенной процедуры), говорит о том, что на этом уровне ожидают своей очереди отложенные вызовы и других процедур ОС, а не только планировщика/диспетчера. Процедуры ОС могут вызывать друг друга и непосредственно, но при многослойном построении ядра существуют более и менее приоритетные процедуры, и вызов менее приоритетных процедур из более приоритетных с помощью механизма программных прерываний позволяет, как и в случае с планировщиком, упорядочить во времени их выполнение, что оптимизирует работу ОС в целом. Примером процедур ОС, работающих на высоком приоритетном уровне, являются те части драйверов устройств ввода-вывода, которые выполняют короткие, но критичные ко времени реакции действия. В то же время существуют и другие части драйверов, которые выполняют менее срочную, но более объемную работу1. В Windows NT такие части драйверов оформляют как процедуры, вызываемые с помощью программных прерываний уровня «диспетчерский/DPC» (ВРОпроцедуры), а само программное прерывание выполняет критичная часть драйвера. Естественно, существуют и другие модули ОС, оформляемые подобным образом.

1 В операционных системах семейства UNIX эти части называют соответственно верхними половинами (top half) и нижними половинами (bottom half) обработчика прерываний.

Описанная программная реализация приоритетного обслуживания прерываний приводит к однотипной работе ОС Windows NT на различных аппаратных платформах, что упрощает логику работы ОС и ее перенос на новые платформы. Отрицательным следствием такого централизованного подхода является некоторое замедление обработки прерываний, так как вместо непосредственной передачи управления драйверу устройства или обработчику исключений выполняется вызов некоего посредника — диспетчера прерываний. В ОС семейства UNIX принят похожий, но менее централизованный подход к ведению и обработке очередей прерываний. Вместо единого диспетчера прерываний его функции выполняют процедуры, обслуживающие каждый приоритетный класс прерываний. Тем не менее, общий подход к упорядочиванию обработки прерываний за счет их многоуровневой приоритезации и ведения системы очередей присутствует практически во всех современных операционных системах.

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 2297; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.