КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Технологические схемы выпарных установок
2.1. Выпарные установки с аппаратами поверхностного типа[1-5]
Принципиальная схема промышленной выпарной установки непрерывного действия изображена на рис. 2.1. Непрерывный процесс выпаривания растворов может производиться как в одноступенчатых, так и в двух-, трех- и многоступенчатых выпарных установках с использованием вторичного пара каждой ступени в последующих ступенях с более низким давлением или с передачей части вторичного пара некоторых ступеней другим тепловым потребителям.
Рис. 2.1. Многокорпусная прямоточная выпарная установка: 1-3 – корпуса; 4 – барометрический конденсатор; 5 – вакуум-насос; 6 – подогреватель исходного раствора
По теплотехнологическим признакам промышленные выпарные установки непрерывного действия разделяют на несколько групп. 1. По числу ступеней: одноступенчатые (рис. 1.1) и многоступенчатые (рис. 2.1); при этом в одной ступени могут быть один, два и более параллельно включенных аппаратов выпарной установки. 2. По относительному движению греющего пара и выпариваемого раствора: а) прямоточные выпарные установки для растворов, обладающих высокой температурной депрессией (рис. 2.1); б) противоточные выпарные установки для растворов с быстро растущей вязкостью при повышении их концентрации (рис. 2.2.); в этих схемах между ступенями ставят насосы; в) выпарные установки с параллельным питанием (рис. 2.3); г) выпарные установки со смешанной схемой питания (рис. 2.4). Наибольшее распространение в промышленных условиях получили прямоточные выпарные установки (рис. 2.1), в которых греющий пар и выпариваемый раствор направляют в первый корпус 1, затем частично упаренный раствор самотеком перетекает во второй корпус 2 и т.д.; вторичный пар первого корпуса направляют в качестве греющего пара во второй корпус и т.д. Рис. 2.2. Противоточная выпарная установка
Прямоточная выпарная установка по сравнению с другими обладает некоторыми преимуществами: поскольку протекание раствора из корпуса в корпус благодаря разности давлений идет самотеком, отпадает необходимость в установке насосов для перекачивания кипящих растворов. Температуры кипения раствора и давления вторичных паров в каждом последующем корпусе ниже, чем в предыдущем, поэтому раствор в корпуса (кроме 1-го) поступает перегретым. Теплота, которая выделяется при охлаждении раствора до температуры кипения в последующем корпусе, идет на дополнительное испарение растворителя из этого же раствора. Это явление получило название самоиспарения. Недостатками прямоточной схемы выпарной установки являются понижение температуры кипения и повышение концентрации раствора от первого корпуса к последнему. Это приводит к повышению вязкости раствора и, следовательно, к снижению интенсивности теплоотдачи при кипении, уменьшению коэффициента теплопередачи и, как следствие, к увеличению общей поверхности теплопередачи. Противоточные установки применяются для выпаривания вязких растворов, которые в условиях прямоточного выпаривания становятся настолько вязкими, что плохо продвигаются по трубопроводам. При противоточном питании наиболее высокая концентрация раствора достигается в первом корпусе, где и температура раствора наибольшая. Поэтому значительного падения коэффициента теплопередачи в корпусе с наиболее концентрированным раствором не происходит и коэффициенты теплопередачи мало изменяются по корпусам. Это является наиболее существенным преимуществом противоточного питания перед прямоточным. Кроме того, при противоточном питании количество воды, выпариваемой в последнем корпусе, меньше, чем при прямоточном питании, что уменьшает нагрузку на конденсатор (при выпарке в вакууме). По расходу теплоты противоточное питание выгоднее прямоточного при питании холодным раствором, но уступает ему при питании горячим раствором. Недостатками противоточной схемы по сравнению с прямоточной (при одинаковом режиме работы) являются увеличение расхода греющего пара (на 5-10 %) и дополнительный расход электроэнергии на работу насосов. При схеме с параллельным питанием (рис. 2.3) слабый раствор подается одновременно во все корпуса, а упаренный раствор из всех корпусов отбирается. Эта схема применяется редко, главным образом при незначительном повышении концентрации раствора и при выпаривании кристаллизующихся растворов, поскольку передача их из корпуса в корпус в этом случае затруднительна вследствие возможного закупоривания перепускных трубопроводов и арматуры.
Рис. 2.3. Схема с параллельным питанием На рис. 2.4 показана схема выпарной установки со смешанной подачей раствора. Смешанный ток может найти применение в тех же случаях, в каких применяется противоток. Преимуществом смешанного тока перед противотоком является уменьшение количества перекачивающих насосов при сохранении положительных качеств противоточной схемы, заключающихся в уменьшении вязкости раствора. Рис. 2.4. Схема со смешанным током раствора
3. По давлению вторичного пара в последней ступени: а) выпарные установки с достаточно глубоким вакуумом в последней ступени (до 90 %) и следующим за ней конденсатором для поддержания этого вакуума, соответствующего температуре охлаждающей воды. Такая схема встречается наиболее часто (рис. 2.1); в ней обеспечивается наибольшая разность температур между первичным греющим теплоносителем и вторичным паром последней ступени, поступающим в конденсатор. Достоинства схемы: - большая общая полезная разность температур благодаря вакууму, что позволяет многократно использовать теплоту и снизить расход греющего пара в установке; - низкая температура кипения в последнем корпусе, которая предотвращает растворы органических сред от пригорания; - меньшая чувствительность к колебаниям нагрузки, так как конденсатор служит буфером, воспринимающим эти колебания. Недостатки схемы: - несколько более сложное оборудование (требуется мощная конденсационная установка для создания вакуума и большая площадь для размещения аппаратов); - потеря вторичного пара из последнего корпуса; - пониженная температура вторичного пара последних корпусов, что влечет за собой необходимость увеличения поверхности теплообмена аппаратов, обогреваемых экстрапаром; б) выпарные установки с повышенным давлением в последней ступени (рис. 2.5). Такая схема может быть более экономичной, если вторичный пар последней ступени может быть использован в других теплоиспользующих установках (при бытовом потреблении теплоты, в отоплении, пищеблоках, банно-прачечном хозяйстве и т.д.).
Преимущества этих установок следующие: - лучшее использование теплоты; - более высокая температура вторичного пара, что позволяет устанавливать теплообменники с относительно небольшой поверхностью теплообмена; - значительно меньшие размеры конденсационного аппарата, так как конденсатор необходим только при пуске установки; - меньшая площадь, занимаемая аппаратом, так как в этой схеме их меньше, чем в вакуумной. Недостатки этой схемы: - большая чувствительность к колебаниям нагрузки, в связи с чем трудно поддерживать стабильный режим и получать раствор равномерной плотности; - опасность порчи продуктов, чувствительных к высоким температурам, поскольку последний корпус работает под повышенной температурой. Чтобы установка работала более гибко, к ней присоединяют еще один аппарат, называемый концентратором, воспринимающий на себя колебания нагрузки. При нормальной работе вторичный пар последнего корпуса уходит весь на сторону, а в концентраторе происходит лишь самоиспарение раствора, поступающего из последнего корпуса. Если же потребление экстра-пара уменьшается, то излишки автоматически подаются в паровую камеру концентратора для доваривания раствора. Наличие концентратора обеспечивает более устойчивую работу выпарной установки и получения концентрированного раствора. Выбор давления вторичного пара в последнем корпусе зависит от соотношения между количеством теплоты, которое может отдать этот пар, и количеством теплоты пара низкого потенциала, требующегося на другие производственные нужды. Оптимальное давление в каждом конкретном случае устанавливается технико-экономическим расчетом; в) выпарные установки с ухудшенным вакуумом (рис. 2.9). По такой схеме установка может работать или на конденсатор, или на потребителя низкопотенциальной теплоты со сбросом излишков пара в конденсатор с ухудшенным вакуумом. Рис. 2.6. Схема выпарной установки с ухудшенным вакуумом
4. По технологии обработки раствора: а) одностадийные выпарные установки, в которых раствор проходит при выпаривании последовательно все ступени и не отводится для других промежуточных операций обработки; б) двух- и более стадийные выпарные установки, в которых раствор после одной из промежуточных ступеней может быть направлен для дополнительной обработки (для осветления, центрифугирования и т.п.), а затем снова поступает на довыпаривание в следующую ступень (вторая стадия, рис. 2.7).
Рис. 2.7. Схема двухстадийная с обогревом аппарата второй стадии свежим паром.
5. По подводу первичной теплоты: а) выпарные установки с одним источником первичной теплоты; б) выпарные установки с двумя источниками теплоты. Например, пар с большим давлением обогревает предвключенную ступень установки, называемую в такой схеме нуль-корпусом, а пар с меньшим давлением подается в следующую ступень, получившую название первого корпуса (рис. 2.8). Нулевой корпус (нуль-корпус) является как бы редуктором пара более высокого потенциала, добавляющим пар при недостатке пара, подаваемого в первый корпус. Системы с нуль-корпусом распространены в сахарной промышленности. Двойной корпус употребляется в том случае, когда, например, поверхность нагрева всех корпусов должна быть одинаковой, а первый корпус должен использовать как мятый пар, так и вторичный пар из нуль-корпуса, чтобы обеспечить обогрев второго корпуса и отпуск значительного количества экстрапара, как показано на схеме. На рис. 2.9 приведена схема двухкорпусной выпарной установки с двумя греющими агентами, например паром и маслом. Такая схема применяется в тех случаях, когда во втором корпусе резко повышается температура кипения раствора за счет роста его концентрации в первом корпусе и температура вторичного пара как греющего оказывается недостаточной. Рис. 2.8. Схема выпарной установки с нуль-корпусом
Рис. 2.9. Схема выпарной установки с двумя греющими агентами
Дата добавления: 2014-01-07; Просмотров: 6617; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |