Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Допущения интегрального метода термодинамического анализа пожара




Интегральная математическая модель пожара описывает в самом общем виде процесс изменения во времени состояния газовой среды в помещении.

1) С позиций термодинамики газовая среда, заполняющая помещение с проемами (окна, двери и т.п.), как объект исследования есть открытая термодинамическая система (рис. 1.1).

2)Ограждающие конструкции (пол, потолок, стены) и наружный воздух (атмосфера) являются внешней средой по отношению к этой термодинамической системе. Граница между термодинамической системой и внешней средой (контрольная поверхность) показана условно на рис. 1.1 пунктирной линией. Эта система взаимодействует с внешней средой путем тепло- и массообмена. В процессе развития пожара через одни проемы выталкиваются из помещения нагретые газы, а через другие поступает холодный воздух.

3) Количество вещества, т.е. масса газа в рассматриваемой открытой термодинамической системе, в течение времени изменяется. Поступление холодного воздуха обусловлено работой проталкивания, которую совершает внешняя среда.

4) Термодинамическая система в свою очередь совершает работу, выталкивая нагретые газы во внешнюю атмосферу. Эта термодинамическая система взаимодействует также с ограждающими конструкциями путем теплообмена. Кроме того, в эту систему с поверхности горящего материала (т.е. из пламенной зоны) поступает вещество в виде газообразных продуктов горения.

Рис. 1.1. Схема пожара в помещении:

---- контрольная поверхность;1 - ограждения; 2 - проемы (окна, двери); 3 – горящий материал; Gг - расход уходящих газов; Gв - расход поступающего холодного воздуха; ψ- скорость выгорания материала

Состояние рассматриваемой термодинамической системы изменяется в результате взаимодействия с окружающей средой. Приступая к изложению сути интегрального метода описания процесса изменения состояния рассматриваемой термодинамической системы, отметим прежде всего следующие два факта.

5) Всегда с большой точностью можно считать, что газовая среда внутри помещения при пожаре есть смесь идеальных газов.

6) В каждой точке пространства внутри помещения в любой момент времени реализуется локальное равновесие. Это означает, что локальные значения основных термодинамических параметров состояния (плотность, давление, температура) связаны между собой уравнением Клапейрона, т.е.

(2.1)

 

где р - локальное давление, Н·м-2; ρ - локальная плотность, кг·м-3; R -газовая постоянная, Дж·кг-1 К-1; Т - локальная температура, К.

При пожаре поля локальных термодинамических параметров состояния являются нестационарными и неоднородными. Расчет этих полей представляет собой чрезвычайно сложную математическую задачу. Интегральный метод описания состояния среды в помещении позволяет не рассматривать эту задачу.

7) Особенностью рассматриваемой термодинамической системы (т.е. газовой среды в помещении) является то, что ее объем (т.е. пространственная конфигурация) в процессе развития пожара практически не изменяется. В связи с этим в интегральном методе описания состояния термодинамической системы, коей является газовая среда в помещении, используются "интегральные" параметры состояния термодинамической системы среднеобъемные параметры - среднеобъемную плотность газовой среды и среднеобъемную (удельную) внутреннюю энергию.

Отношение этих двух интегральных параметров позволяет оценивать в среднем степень нагретости газовой среды. В процессе развития пожара значения указанных интегральных параметров состояния изменяются.

1.2 Среднеобъемная плотность газовой среды в помещении представляет собой отношение массы газа, заполняющего помещение, к объему помещения, т.е.

(2.2)

 

где М - масса газа, заполняющего помещение, кг; V - свободный объем помещения, м3. Нижний индекс т, используемый здесь и далее, представляет собой первую букву в немецком слове mittel (средний). Следует отметить, что

(2.3)

С формальных позиций среднеобъемная плотность газовой среды есть результат осреднения по объему помещения всех значений локальной плотности, т.е.

(2.4)

Газовая среда в помещении представляет собой смесь кислорода, азота и продуктов горения. В процессе развития пожара количественное соотношение между компонентами смеси изменяется. В интегральном методе описания процесса изменения массы i -го компонента смеси в течение времени используется параметр, называемый среднеобъемной парциальной плотностью i -го компонента смеси.

1.3 Среднеобъемная парциальная плотность i -го компонента представляет собой отношение массы i -го компонента смеси (например О2), содержащейся в объеме помещения, к объему помещения, т.е.

(1.5)

(2.5)

 

где М, - масса i -го компонента, находящегося в помещении, кг. Отметим, что с формальной точки зрения среднеобъемная парциальная плотность i -го компонента есть результат осреднения по объему помещения всех значений локальной парциальной плотности этого компонента, т.е.

(2.6)

где ρi, - локальное значение парциальной плотности i -го компонента, кг·м-3.

 

1.4 Среднеобъемная (удельная) внутренняя энергия представляет собой отношение внутренней тепловой энергии всего газа, заполняющего помещение, к объему помещения, т.е.

(2.7)

где и - внутренняя энергия всей газовой среды, заполняющей помещение, Дж. С формальных позиций среднеобъемная внутренняя энергия газовой среды есть результат осреднения по объему всех значений локальной удельной (объемной) внутренней энергии, т.е.

(2.8)

где UV - локальное значение удельной (объемной) внутренней энергии, Дж·м -3. Локальные значения удельной объемной внутренней энергии и удельной массовой внутренней энергии связаны между собой простым соотношением, которое имеет следующий вид:

(2.9)

где и - локальное значение удельной массовой внутренней энергии газа, Дж·кг. Отметим здесь, что между локальным значением удельной массовой внутренней энергии и локальной температурой идеального газа существует простая взаимосвязь, а именно

(2.10)

где c v - изохорная теплоемкость газа, Дж·кг·К.

В интегральном методе описания процесса изменения состояния термодинамической системы (т.е. газовой среды в помещении) вместо среднеобъемной внутренней энергии используется параметр состояния, называемый среднеобъемным давлением. Эти два параметра в формальном отношении являются взаимозаменяемыми. Покажем это. Формулу (2.8) можно преобразовать с помощью выражений (2.9) и (2.10)

(2.11)

Если теперь воспользоваться уравнением Клапейрона (2.1), то формулу (2.11) можно преобразовать и получить следующее выражение:

 

(2.12)

 

где p - локальное давление, Н·м -2;

к = Cp / C V - отношение изобарной и изохорной теплоемкостей идеального газа (показатель адиабаты). С достаточной для практики точностью можно считать, что показатель адиабаты во всех точках внутри помещения есть одна и та же постоянная величина. С учетом этого замечания формулу (2.12) можно преобразовать:

(2.13)

Выражение в прямоугольных скобках представляет собой операцию осреднения всех локальных значений давления по объему помещения. Результат этого осреднения называют среднеобъемным давлением, т.е.

(2.14)

где рт - среднеобъемное давление, Н·м -2

Сравнивая выражения (2.13) и (2.14), получим следующее соотношение между среднеобъемной внутренней энергией и среднеобъемным давлением:

(2.15)

Из последней формулы следует, что среднеобъемное давление прямо пропорционально среднеобъемной внутренней энергии. Среднеобъемное давление необходимо знать при расчетах газообмена помещения с внешней атмосферой, что будет показано в дальнейшем.

Степень нагретости газовой среды характеризуется в среднем отношением внутренней энергии этой среды к ее массе. Отношение этих физических величин можно представить с помощью формул (2.2), (2.7) и (2.15) в следующем виде:

(2.16)

Если правую и левую части равенства (2.16) поделить на изохорную теплоемкость, то получится следующее выражение:

(2.17)

Комплекс в левой части выражения (2.17) имеет размерность "Кельвин". Этот комплекс представляет собой параметр состояния рассматриваемой термодинамической системы, который называется среднемассовой температурой газовой среды, т.е.

(2.18)

С помощью выражения (2.18) можно преобразовать формулу (2. ] 7) и в результате получить следующее уравнение:

(2.19)

Вывод: Уравнение 2.19 является основным и связывает между собой три важных параметра состояния газовой среды в помещении при пожаре. По внешнему виду это уравнение такое же, как уравнение Клапейрона для локальных параметров состояния. В дальнейшем уравнение (2.19) для краткости будем называть усредненным уравнением состояния газовой среды, заполняющей помещение.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 3362; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.024 сек.