Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Зависимость проницаемости от пористости. Классификация проницаемых пород

Классификация проницаемых пород

По характеру проницаемости (классификация Теодоровича Г. И.) различают коллектора:

- равномерно проницаемые;

- неравномерно проницаемые;

- трещиноватые.

По величине проницаемости (мкм2) для нефти выделяют 5 классов коллекторов:

1. очень хорошо проницаемые (>1);

2. хорошо проницаемые (0,1 – 1);

3. средне проницаемые (0,01 – 0,1);

4. слабопроницаемые (0,001 – 0,01);

5. плохопроницаемые (<0,001).

Для классификации коллекторов газовых месторождений используют 1–4 классы коллекторов.

 

Теоретически, для хорошо отсортированного материала (песок мономиктовый) проницаемость не зависит от пористости.

Для реальных коллекторов в общем случае более пористые породы являются более проницаемыми.

Зависимость проницаемости от размера пор для фильтрации через капиллярные поры идеально пористой среды оценивается из соотношения уравнений Пуазейля и Дарси. В этом случае пористая среда представляется в виде системы прямых трубок одинакового сечения длиной L, равной длине пористой среды.

Уравнение Пуазейля описывает объёмную скорость течения жидкости через такую пористую среду:

 

, (1.22)

 

где r – радиус порового канала;

L – длина порового канала;

n – число пор, приходящихся на единицу площади фильтрации;

F – площадь фильтрации;

m – вязкость жидкости;

DР – перепад давлений.

Коэффициент пористости среды, через которую проходит фильтрация:

 

. (1.23)

 

Следовательно, уравнение (1.22) можно переписать следующим образом:

 

. (1.24)

 

Из уравнения Дарси следует, что:

 

. (1.25)

 

Приравняв правые части уравнений (1.24) и (1.25) получим взаимосвязь пористости и проницаемости:

. (1.26)

 

Из чего следует, что размер порового канала будет равен:

 

. (1.27)

 

Если выразить проницаемость в мкм2, то радиус поровых каналов (в мкм) будет равен:

. (1.28)

 

Оценка проницаемости для фильтрации через трещиноватые поры оценивается из соотношения уравнений Букингема и Дарси.

Потери давления при течении жидкости через щель очень малой высоты оцениваются уравнением Букингема:

 

, (1.29)

 

где h – высота трещины;

v – линейная скорость фильтрации.

Подставив это выражение в уравнение Дарси, получим:

 

. (1.30)

 

Соотношения (1.25) и (1.26) справедливы только для идеальной пористой среды (например, кварцевый песок).

Для реальных условий используется эмпирическое уравнение Котяхова:

 

, (1.31)

 

где R – радиус пор;

j – структурный коэффициент, описывающий извилистость порового пространства.

Значение j можно оценить путём измерения электросопротивления пород. Для керамических пористых сред при изменении пористости от 0,39 до 0,28, по экспериментальным данным, j изменяется от 1,7 до 2,6. Структурный коэффициент для зернистых пород можно приблизительно оценить по эмпирической формуле:

 

. (1.32)

<== предыдущая лекция | следующая лекция ==>
Оценка проницаемости пласта, состоящего из нескольких пропластков различной проницаемости | 
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 328; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.