Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Анатомо-морфологическое строение организма




Филогенезе и онтогенез

Становление и развитие организма человека в

Биологические основы физической культуры

Биологические и социально - биологические основы физической культуры

Физическая культура в своей основе имеет биологические корни: зако­номерности становления, развития и функционирования организма человека.

На развитие и повседневную жизнедеятельность человека также оказывает влияние окружающая среда: природно-климатические, экологические, социальные факторы. Влияние этих факторов должно изучаться и всегда учитываться при направленном использовании средств физической культуры, при непосредственной организации учебно-тренировочных занятий и массовых физкультурно-спортивных мероприятий.

 

Роль двигательной активности для нормальной жизнедеятельности современного человека. Эволюционной программой развития человека определено то, что все составляющие его организма (клетки, ткани, органы, системы) для своего естественного нормального функционирования требуют определенного объема движений. Поэтому в онтогенезе отдельного человека двигательная активность, оптимальный объем и интенсивность движений являются не только обязательным условием нормального физического развития каждого человека, но и одним из основных условий обеспечения жизненно необходимого уровня функциональных возможностей организма во всех возрастных периодах его жизни.

Поэтому на современном уровне цивилизации забота об обеспечении оптимального объема двигательной активности становится все более существенной. Ограниченность объема физических нагрузок у современного человека в труде и быту потребовала разработки и внедрения в жизнь дополнительных (иногда искусственно созданных) физических упражнений и условий их выполнения. Именно этим обусловлена и необходимость включения в жизнь современного человека физкультурно-спортивных физических упражнений. Подобные упражнения дифференцируются для разных возрастных групп, для представителей различных видов труда, для жителей различных регионов и т.д.

Онтогенез – индивидуальное развитие-живого существа, охватывающее все изменения, происходящие в организме от стадии оплодотворения яйцеклетки до окончания его жизни.

 

Функциональная реакция отдельных составляющих организма на повышенную двигательную активность.

Правильная организация процесса физического воспитания и спортивной тренировки предопределяет необходимость знаний о строении человеческого тела, закономерностях деятельности составляющих его организма при функциональном обеспечении движений человека. Особенно это важно при самостоятельных тренировках.

В настоящее время анатомо-морфологическое строение организма человека общепринято изучать и излагать в следующей последовательности: клетки, ткани, органы, системы.

Клетка

Единство организма человека с внешней средой проявляется прежде всего в постоянно непрекращающемся обмене веществ и энергии.

Постоянный обмен веществ и энергии выражается, с одной стороны, процессами ассимиляции – усвоением поступающих в организм питательных веществ и кислорода, которые сопровождаются накоплением в организме потенциальной энергии, с другой стороны, процессами диссимиляции — постоянным распадом усвоенных сложных химических веществ на более простые с высвобождением химической энергии, которая затем переходит в биоэлектрическую, тепловую, механическую.

Эти важнейшие для организма процессы жизнедеятельности осу­ществляются в элементарной живой системе – клетке. Она является основой зарождения, развития, саморегуляции, существования любых живых организмов.

Клетка способна автоматически настраиваться на оптимальный режим работы в непрерывно меняющихся условиях функционирования. В организме человека насчитывается более 100 трлн регулярно обновляющихся клеток. Клетки разнообразны по своим размерам, формам и функциям. Определенные группы клеток специализированы. Основная часть любой клетки – ядро и цитоплазма.

Основное жизненное свойство клетки – это обмен веществ, или метаболизм, т. е. клетка обладает сложными и эффективными системами превращения одного вида энергии в другой. Химическая энергия может превращаться в механическую работу при сокращении клетки, в электрическую – при проведении нервного импульса или в другой химический процесс, связанный с ростом и делением самой клетки. В конце концов, энергия переходит в виде тепла во внешнюю среду. Образно говоря, каждая клетка организма представляет собой одновременно фабрику по переработке веществ, поступающих в орга­низм; электростанцию, вырабатывающую биологическую энергию; компьютер и множительный аппарат с большим объемом хранения и выдачи наследственной информации.

Повышение двигательной активности человека создает для каждой клетки, участвующей в обеспечении процесса движения, дополнительные условия и возможности для:

• деления и размножения клеток (роста тканей);

• выработки дополнительной энергии;

• активации выведения из клеток и организма продуктов распада после биохимических процессов.

Сохраняя свою относительную автономию, клетка входит в состав той или иной тканевой системы.

Ткань

Это совокупность клеток, имеющих одинаковое строение, функцию. В зависимости от функциональной специализации выделяют четыре вида тканей.

Эпителиальные ткани обеспечивают обмен веществ между организмом и окружающей средой, а также выполняют защитную и терморегуляционную функции.

Соединительные ткани объединяют хрящевую, костную, собственно соединительную ткань; они выполняют пластическую, защитную и механическую (опорную) функции и играют важную роль в питании тканей.

Нервная ткань состоит из различных нервных клеток, обеспечивающих восприятие, трансформацию и проведение возбуждений. Она пронизывает каждую клетку и эпителиальной, и соединительной, и мышечной ткани, является проводником центральной нервной системы (ЦНС), в том числе и при управлении каждым движением человека.

Мышечная ткань устроена очень сложно. Мышца имеет волокнистую структуру. Каждое ее волокно – это мышца в миниатюре. Основа мышцы — белки, главные свойства – возбудимость и сократимость. Возбуждение мышечных волокон представляет собой сложную систему энергетических, химических, структурных и иных изменений в клетках, обеспечивающих специфическую работу мышечной ткани.

В процессе мышечного сокращения потенциальная химическая энергия переходит в потенциальную механическую энергию напряжения и кинетическую энергию движения. Работа мышц, движение отдельных частей тела происходит именно в результате способности клеток мышечной ткани переходить в состояние возбуждения и сокращения.

Кровь – жидкая ткань, которая может выступать и как самостоятельная физиологическая система. Кровь, циркулирующая в кровеносной системе, обеспечивает жизнедеятельность клеток и тканей организма. Кислород в клетки и ткани доставляется только кровью, и только кровью из тканей уносятся образующиеся в них продукты окисления.

Кровь состоит из плазмы и взвешенных в ней форменных элементов: красных кровяных телец (эритроцитов), белых кровяных телец (лейкоцитов), кровяных пластинок (тромбоцитов). В 1 мл крови в норме содержится 4,4–

5 млн эритроцитов, 6–8 тыс. лейкоцитов, 200–300 тыс. тромбоцитов.

Эритроциты – клетки, почти полностью заполненные особым белком –гемоглобином. Гемоглобин способен давать нестойкое соединение с кислородом (оксигемоглобин, имеющий яркий алый цвет), что позволяет крови транспортировать кислород из легких к тканям тела. Именно гемоглобин является тем «вагончиком», который перевозит кислород по всему организму. Малый размер эритроцитов позволяет им проходить по тончайшим кровеносным сосудам – капиллярам. Эритроциты участвуют и в переносе углекислого газа из тканей в легкие.

Физические упражнения способствуют увеличению количества гемоглобина в эритроцитах и количества эритроцитов в крови, что повышает кислородную емкость крови и ее транспортабельность в организме.

Лейкоциты – белые кровяные тельца, выполняют преимущественно защитную функцию. Они могут выходить из кровяного русла непосредственно в ткани тела в пораженном его участке и там уничтожать инородные для организма белки, в том числе болезнетворные микробы.

Тромбоциты значительно меньше эритроцитов. Они играют важную роль в сложном процессе свертывания крови при повреждениях какой-либо из тканей.

В плазме крови растворены гормоны, минеральные соли, питательные и другие вещества, которыми она снабжает ткани, а также содержатся продукты распада, удаленные из тканей.

При движении крови по капиллярам, пронизывающим все ткани, через их полупроницаемые стенки постоянно просачивается в межтканевое пространство часть кровяной плазмы, которая образует межтканевую жидкость, окружающую все клетки тела. Кровь непрерывно отдает в межтканевую жидкость питательные вещества, используемые клетками, и поглощает вещества, выделяемые ими. Здесь же, между клетками, расположены мельчайшие лимфатические сосуды. Некоторые вещества межтканевой жидкости просачиваются в эти сосуды и образуют лимфу, которая выполняет следующие функции: возвращает белки из межтканевого пространства в кровь, участвует в перераспределении жидкости в организме, доставляет жиры к клеткам тканей, поддерживает нормальное протекание процессов обмена веществ в тканях, удаляет из организма болезнетворные микроорганизмы. Лимфа по лимфатическим сосудам возвращается в кровь, в венозную часть сосудистой системы.

Количество крови составляет 7–8 % массы тела человека. В покое 40 - 50% крови выключается из кровообращения и находится в «кровяных депо»: в печени, селезенке, в сосудах кожи, мышцах, легких. В случае необходимости (например, при активной мышечной работе) запасной объем крови включается в кровообращение. Наибольший объем крови рефлекторно направляется к работающему органу. Все это регулируется центральной нервной системой.

Органы

Это части организма, выполняющие определенную функцию (сердце, легкие, почки и т.д.).

Орган имеет свою, только ему свойственную форму и положение в организме. Он может состоять из нескольких тканей, но, как правило, одна из них играет первостепенную роль. В то же время в каждом органе есть соединительная, нервная и эпителиальная ткани. Каждый из органов является составной частью одной из физиологических систем организма.

Системы органов

Органы, объединенные определенной физиологической функцией, составляют физиологическую систему.

Различают следующие физиологические системы: опоры и движения (костная и мышечная), кровеносную, дыхательную, нервную, покровную, пищеварительную, выделительную, половую, эндокринную.

В обеспечении двигательной активности человека практически задействованы почти все физиологические системы. Однако определяющими являются первые четыре из перечисленных выше физиологических систем. Понимание функций и работы этих систем–одно из условий осмысленного выполнения физических упражнений при физкультурно-спортивных или жизненно-бытовых физических нагрузках.

Объединение различных органов и систем для решения какой-либо функциональной задачи называют функциональной системой.

Система опоры и движения

Эта система объединяет в себе две подсистемы – костную и мышечную, она состоит из большого числа парных и непарных костей, мышц, связок, мышечных сухожилий.

Кости, соединяясь между собой различными суставами, образуют скелет – опору человеческого тела. Кости скелета состоят преимущественно из костной ткани, пронизанной кровеносными, лимфатическими сосудами и волокнами нервной ткани. При любых положениях тела (стоянии, сидении, лежании) все органы опираются на кости. Главной опорой скелета служит позвоночный столб, состоящий из 33 - 34 отдельных позвонков с межпозвоночными хрящевыми дисками. В этом и состоит опорная функция скелета.

Скелет выполняет и защитные функции, ограждая жизненно важные внутренние органы от внешних механических воздействий (кости черепа, грудная клетка, кости таза). Кроме того, некоторые части скелета – позвоночник с его функциональными изгибами и суставы нижних конечностей – совместно с мышцами осуществляют амортизационные функции при ходьбе, беге, прыжках, оберегая мозг человека и его внутренние органы от неблагоприятных длительных или сильных толчков и сотрясений.

Двигательные функции системы опоры и движения реализуются посредством взаимодействия костей скелета, его суставов, по сути являющихся рычагами, и мышц. Большинство костей, соединяющихся между собой связками и мышечными сухожилиями, образуют суставы (конечности, позвоночник и др.). Сустав полностью заключен в суставную сумку, стенки которой выделяют синовиальную жидкость, выполняющую роль смазки.

Основная функция суставов – осуществление движений. Наряду с этим они выполняют роль своеобразных тормозов, гасящих инерцию движения, что позволяет производить мгновенную остановку после быстрого движения. Отсутствие достаточной двигательной активности мышц, окружающих кости и прилегающих к суставам, приводит к нарушению обмена веществ в костной ткани и потере их прочности, а в суставах – к разрыхлению суставного хряща, к изменению суставных поверхностей, к появлению болевых ощущений.

Мышцы. У человека насчитывается более 600 мышц. Они составляют у мужчин 35–40 % веса тела (у спортсменов 50 % и более), у женщин несколько меньше.

Мышечная система обеспечивает движение человека, вертикальное положение тела, фиксацию внутренних органов в определенном положении, дыхательные движения, усиление тока крови и лимфы («мышечный насос»), теплорегуляцию организма вместе с другими системами. При работе мышцы развивают определенную силу, которую можно измерить. Многие скелетные мышцы обладают значительной силой, способной преодолеть даже вес собственного тела. Систематическая направленная тренировка увеличивает силу мышц, главным образом, за счет увеличения и утолщения мышечных волокон. При совершенствовании своих силовых возможностей важно знать не только анатомическую топографию мышц, но и точки прикрепления тренируемых мышц к костям скелета. Это позволяет избирательно подбирать тренировочные упражнения — например, на сгибание или разгибание отдельных частей тела, или на пронацию (поворот внутрь), супинацию (поворот наружу) отдельных конечностей или их частей.

Кровеносная (сердечно-сосудистая) система. Кровеносная система состоит из сердца и сети кровеносных сосудов. Её функция – обеспечение непрерывной доставки к каждой клетке, ткани, органу питательных веществ, кислорода и гормонов, а также освобождение организма от ненужных веществ – углекислого газа и других продуктов внутреннего обмена. С сосудистой системой связаны также селезенка («депо крови») и красный костный мозг, являющийся органом кроветворения.

Сердечно-сосудистая система состоит из большого и малого кругов кровообращения. Левый желудочек сердца и правое предсердие обслуживают большой круг кровообращения, а правый желудочек и левое предсердие – малый. Большой круг кровообращения начинается от левого желудочка сердца, проходит через ткани всех органов и возвращается в виде венозной крови в правое предсердие. Из правого предсердия кровь переходит в правый желудочек, и оттуда, из правого желудочка, начинается малый круг кровообращения, который проходит через легкие, где венозная кровь, отдавая углекислый газ и насыщаясь кислородом, превращается в артериальную и направляется в левое предсердие. Из левого предсердия кровь переходит в левый желудочек и оттуда снова в большой круг кровообращения.

Сердце – центральный орган кровеносной системы, который соединен с кровеносными сосудами различного диаметра. Функция сердца – прогонять кровь по сосудам, чтобы обеспечить газообмен между клетками и внешним воздухом. Вес сердца здорового человека – 300–500 г по 5–7 г на килограмм веса в зависимости от тренированности. По существу, сердце – это четырехкамерный насос, делящийся на две половины – левую и правую, каждая из которых состоит из предсердия и желудочка, соединенных между собой клапанами, обеспечивающими свободное поступление крови из предсердия в желудочек, но препятствующими её обратному току. Оно ритмично сокращается и гонит кровь по сосудам ко всем органам и тканям организма.

Сердце – автоматическое устройство с внутренней автономной иннервацией. Однако на его работу существенное регулирующее воздействие оказывает и центральная нервная система: непосредственно это воздействие ветви блуждающего нерва (замедляет деятельность сердца) и симпатического (ускоряет).

Ритмика сердечных циклов состоит из трёх фаз: сокращения предсердий, сокращения желудочков и общего расслабления сердца. Временные соотношения этих трех фаз во многом зависят от развития и тренированности сердечной мышцы и от аналогичного состояния кровяного русла (аорты, артерий, капиллярной сети и венозных сосудов). Движение крови в сосудах обусловлено силой и частотой сокращений сердца и тонусом кровеносных сосудов, от которых зависит давление крови в артери­альной системе. Частота сердечных сокращений у здорового взрослого человека составляет 60–80 ударов в минуту.

Двигательная активность человека, занятия физическими упражнениями, спортом оказывают существенное влияние на развитие и состояние сердца. Пожалуй, ни один орган не нуждается столь сильно в тренировке и не поддается ей столь легко, как сердце. Работая с большой нагрузкой при выполнении спортивных и трудовых физических упражнений, сердце неизбежно тренируется. Оно приспосабливается к переброске намного большего количества крови, чем это может сделать сердце нетренированного человека. В процессе регулярных занятий физическими упражнениями, как правило, происходит увеличение массы сердечной мышцы и размеров сердца.

Показателями работоспособности сердца являются, в первую очередь, частота пульса, кровяное давление, систолический объем крови минутный объем крови.

Сеть кровеносных сосудов. Кровь в организме под воздействием работы сердца находится в постоянном движении, которое называется кровообращением. Оно осуществляется по обширной сети кровеносных сосудов: отходящая от сердца аорта переходит в артерии, артериолы и заканчивается мельчайшими капиллярами, через которые кислород и питательные вещества попадают в ткани. По венам кровь возвращается в сердце под воздействием разности давлений в артериях и венах, которое обеспечивает непрерывный ток крови по кровеносным сосудам.

Артерии – кровеносные сосуды, по которым кровь движется от сердца, имеют плотные упругие мышечные стенки. Самые мелкие артерии разветвляются на микроскопические сосуды – капилляры, пронизывающие весь организм.

Таблица 2

Сравнительные показатели состояния сердца нетренированного и

тренированного человека

(по И.А Абрикосову, Н.Д Граевской, Г.М Кууолевскому)

Состояние тренированности человека Размеры сердца, мм Толщина стенок Объем сердца Вес сердца
длина поперечник предсердие правый желудочек левый желудочек
Нетренированный       5-7 10-12 500-700 270-300
Тренированный(преимущественно на выносливость) 16-17 16-18 3-4 8-10 14-16 1000-1200 350-500

 

Их толщина в 10 – 15 раз тоньше человеческого волоса, и они охватывают все ткани тела. Если все капилляры человека уложить в одну линию, то ее длина составит 100 тыс. км. Капилляры имеют тонкие полупроницаемые стенки, через которые во всех тканях организма осуществляется обмен веществ. В состоянии покоя или малой двигательной активности значительная часть капилляров не участвует в кровообращении. Из капилляров кровь переходит в вены – сосуды, по которым она движется к сердцу. Вены имеют тонкие и мягкие стенки и клапаны (в магистральных венах конечностей туловища), которые пропускают кровь только в сторону сердца.

Движению крови по сосудам способствует деятельность окружающих их мышц («мышечный насос»). Сокращаясь и расслабляясь, мышцы то сдавливают сосуды, то дают им расправиться и тем самым проталкивают кровь по направлению от сердца (в артериях) и к сердцу (в венах), так как движению крови в противоположную от сердца сторону препятствуют клапаны, имеющиеся в венозных сосудах. Чем чаще и полнее сокращаются и расслабляются мышцы, тем большую помощь сердцу оказывает «мышечный насос».

Постоянная физическая работа, регулярные физические упражнения благоприятно сказываются и на системе кровообращения, так как способствуют снижению тонуса стенок сосудов, расширению сосудов и всего кровяного русла, в том числе и за счет вовлечения в кровообращение резервной части капиллярной сети. Умственная работа, равно как и нервно-эмоциональное напряжение, наоборот, приводит к сужению сосудов, повышению тонуса их стенок и даже к спазмам. Такая реакция особенно свойственна сосудам сердца и мозга.

Дыхательная система

Дыхательная система участвует в обеспечении организма кислородом и в освобождении его от углекислого газа. Воздух поступает сначала в носовую (ротовую) полость, затем в носоглотку, гортань и дальше в трахею. Трахея в нижней своей части делится на два бронха, каждый из которых, входя в легкие, древовидно разветвляется.

Конечные мельчайшие разветвления бронхов (бронхиолы) переходят в закрытые альвеолярные ходы, в стенках которых имеется большое количество шаровидных образований – легочных (альвеол). Каждая альвеола окружена густой сетью кровеносных капилляров. Именно здесь происходит газообмен между кровью и атмосферным воздухом легких. Общая поверхность всех легочных пузырьков очень велика, она в 50 раз превышает поверхность кожи человека и составляет более 100 м2.

Углекислый газ, интенсивно образующийся в клетках, переходит в межтканевую жидкость и затем в кровь. С помощью крови он транспортируется к легким, а затем выводится из организма во время выдоха. Обмен воздуха в легких происходит в результате дыхательных движение грудной клетки. Через каждые 3–4 с у человека под влиянием импульсов, поступающих из ЦНС, происходит сокращение дыхательных мышц – диафрагмы и наружных межреберных мышц. В результате объём грудной клетки увеличивается. При интенсивной физической работе в выдохе дополнительно участвуют мышцы брюшного пресса, внутренние межреберные и другие скелетные мышцы.

Деятельность дыхательной системы через ЦНС строго координируется с другими системами.

Частота и глубина дыхания (совместно с сердечно-сосудистой системой) влияют на приток крови в легких. В норме на 6–9 л воздуха, проходящих через легкие за 1 мин, приходится около 5 л крови. При нарушении акта дыхания приток крови может уменьшиться, снижается насыщение ее кислородом.

Систематические занятия физическими упражнениями укрепляют дыхательную мускулатуру и способствуют увеличению подвижности (экскурсии) и объема грудной клетки, вовлекают в дыхательный процесс дополнительное число альвеол, так как далеко не все из них задействованы в состоянии покоя. Все это существенно повышает резервные возможности дыхательной системы и работоспособность организма человека.

Нервная система

Нервная система состоит из центрального (головной и спинной мозг) и периферических отделов (нервов, отходящих от головного и спинного мозга и расположенных на периферии нервных узлов). ЦНС координирует деятельность различных органов и систем организма. Процессы, протекающие в ЦНС, лежат в основе как двигательной, так и всей психической деятельности человека.

Спинной мозг выполняет рефлекторную и проводниковую для нервных импульсов функцию. Главным «исполнителем» спинного мозга является сеть соматической нервной системы, иннервирующей произвольную (скелетную) мускулатуру и обеспечивающей общую чувствительность тела и отдельных органов чувств. Тонус центров спинного мозга регулируется высшими отделами ЦНС, находящимися в головном мозге.

Специализированным отделом нервной системы, регулируемым корой больших полушарий, является вегетативная нервная система. В отличие от соматической, вегетативная нервная система автономно регулирует деятельность внутренних органов – дыхания, кровообращения, выделения, размножения, желез внутренней секреции, регуляции обмена веществ, термообразования, а также участвует в формировании эмоциональных реакций (страх, гнев, радость). Деятельность вегетативной нервной системы в основном непроизвольна и сознанием непосредственно не контролируется.

Головной мозг представляет собой скопление огромного количества нервных клеток. Согласно современным представлениям, в коре головного мозга насчитывается свыше 14 млрд клеток и 100 тыс. млрд межклеточных связей. Это система высшей сложности, определяющая физическую, интеллектуальную и духовную сущность человека.

Кора головного мозга разделена на отдельные зоны, специализированные на отдельных функциях: двигательная зона, кожно-мышечная, зрительная и т.д. Специализированные участки коры головного мозга имеются и для психических функций (память, речь, мышление и т.д.). Некоторые отделы мозга (продолговатый мозг, мозжечок) также активно и избирательно участвуют в регуляции двигательной деятельности.

Кора больших полушарий головного мозга – наиболее молодой в филогенетическом отношении отдел ЦНС по сравнению со спинным мозгом и его функциями. Именно этим объясняется определенная неустойчивость функций головного мозга (например, умственная де­ятельность) по сравнению с рефлекторными действиями двигательных нервных клеток спинного мозга, непосредственно обеспечивающих физические нагрузки человека.

Мозговая ткань потребляет в 5 раз больше кислорода, чем сердце, и в 20 раз больше, чем мышцы. Составляя всего около 2 % массы тела человека, мозг поглощает 18–25 % потребляемого всем организмом кислорода и очень чувствителен к его недостатку. В этом случае возникает слабость, понижается умственная работоспособность, ухудшается память, появляется раздражительность, возможны головные боли. Причиной может оказаться и элементарный недостаток движений, физической нагрузки, которая активизирует поступление кислорода крови в головной мозг.

Рецепторы и анализаторы как самостоятельная система организма

Рецепторы – это такие нервные образования, которые воспринимают раздражения и во многом определяют способность организма быстро приспособиться к изменениям в окружающей среде, трансформируя внешние раздражения (температуру, звук, свет и т.д.), а также с внутренних органов и опорно-двигательного аппарата, в нервные импульсы, поступающие в ЦНС.

Рецепторы человека делятся на две группы: экстеро- (внешние) и интеро- (внутренние). В свою очередь, внутренние рецепторы делятся на висцеро- (на внутренних органах) и проприо- (на органах опоры и движения) рецепторы. Каждый такой рецептор является составной частью анализирующей системы — анализатора. Анализатор состоит из трех отделов: рецептора, проводниковой части и центрального образования в головном мозге. К анализаторам, обеспечивающим жизнедеятельность человека, относятся кожный, двигательный, вестибулярный, зрительный, слуховой, обонятельный, вкусовой, висцеральный (со­стояние ряда внутренних органов). При разнообразных движениях человека наиболее задействованы: двигательный (рецепторы в мышцах, сухожилиях и связках – проприорецепторы возбуждаются под влиянием давления и растяжения), вестибулярный (воспринимает положение тела в пространстве), зрительный (восприятие пространства) и отчасти – кожный (тактильная, болевая, тепловая чувствительность).

Другие внутренние органы и системы организма человека Пищеварительная система включает следующие органы: ротовую полость, слюнные железы, глотку, пищевод, желудок, кишечник, печень, поджелудочную железу. В этих органах пища механически и химически обрабатывается, перевариваются поступающие в организм пищевые вещества. Они всасываются в кишечнике и доставляются кровью ко всем клеткам организма. Для эффективного переваривания пищи большое значение имеет выделение необходимого количества пищеварительных соков и активность перистальтических (передвигающих пищу) движений желудка и кишечника.

Оптимальная физическая нагрузка увеличивает потребность организма в питательных веществах, стимулирует выделение пищеварительных соков, активизирует перистальтику кишечника и тем самым повышает эффективность процессов пищеварения.

Однако положительное влияние мышечной работы на пищеварение наблюдается не всегда. При напряженной мышечной работе происходит например, торможение пищевых центров в ЦНС, уменьшается кровоснабжение органов пищеварения и пищеварительных желез в связи с оттоком крови к работающим мышцам. Все это угнетает работу органов пищеварения. С другой стороны, переваривание пищи, особенно обильной, отрицательно влияет на двигательную деятельность. Наблюдаемые после приема пищи возбуждение пищевых нервных центров и отток крови от мышц к органам брюшной полости снижает эффективность мышечной работы. Именно поэтому прием пищи следует производить в оптимальных количествах за 2–3 ч до физических нагрузок.

Покровная система. В нее входят кожа и слизистые оболочки. Кожа покрывает тело снаружи. Слизистые оболочки выстилают изнутри полости носа, рта, дыхательных путей и пищеварительной системы. Кроме защитных свойств, покровная система частично выполняет выделительную и терморегуляционную функции.

Выделительная система осуществляет функцию поддержания оптимальных отношений с внешней средой и сохранения внутренней среды организма, главным образом через выделение продуктов внутреннего обмена. Основную функцию полноценного освобождения организма от конечных продуктов обмена веществ выполняют почки, потовые железы и легкие. Почки и потовые железы дополняют и частично взаимозаменяют работу друг друга. При больших физических нагрузках потовые железы и легкие, увеличивая активность своей выделительной функции, значительно помогают почкам в выведении из организма вредных продуктов обмена веществ.

Говоря о системе выделения, необходимо остановиться и на процессе теплообмена организма человека, особенно актуального при физических нагрузках.

Постоянную температуру тела человека поддерживает специальная система терморегуляции, состоящая из физических механизмов теплоотдачи: теплопроведения, теплоизлучения и испарения. Однако некоторый подъем температуры тела, в частности на 1–1,5°С, наблюдаемый при мышечной работе, способствует более эффективному протеканию в тканях окислительно-восстановительных процессов, повышению работоспособности организма и эластичности мышц. Повышение температуры тела до 38–38,5°С у нетренированного человека может привести к тепловому удару. Тренированные люди подобную температуру переносят хорошо, и их работоспособность сохраняется на высоком уровне.

Эндокринная система включает различные железы внутренней секреции. Каждая из желез вырабатывает и выделяет в кровь особые биологические вещества (гормоны), регулирующие жизнедеятельность органов и систем.

Половая система выполняет функцию размножения. В ней формируются половые клетки. Половая активность человека напрямую связана с его физическим состоянием.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 2620; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.05 сек.