Анықтама. Егер әрбір n (n= 1, 2,...) үшін болса, онда {хn} тізбегін өспелі, ал егер болса, онда {хn} тізбегін кемімелі деп атайды.
Егер әрбір n (n =1, 2,...) үшін болса, онда { хn } тізбегін кемімейтін, ал егер болса, онда { хn } тізбегін өспейтін тізбек деп атайды.
Бұл тізбектердің әрқайсысын монотонды деп атайды. Өспелі және кемімелі тізбектерді қатаң монотонды деп те атайды.
3-теорема. Кез келген жоғарыдан (төменнен) шенелген өспелі (кемімелі) тізбектің ақырлы шегі бар.
Монотонды және шенелген тізбектің әрқашанда нақты мәнді шегі бар болады, өйткені онда жиынының супремумы мен инфимумы нақты сан болады.
Қатаң монотонды тізбектердің монотонды тізбектерге қарағанда ерекше қасиеттері бар. Мәселен, монотонды тізбектің мәндерінің бәрі де шегіне тең болуы мүмкін (мысалы, xn ≡1 үшін), ал катаң монотонды тізбектің бірде-бір мәні шегіне тең бола алмайды.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление