КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Течение и свойства жидкостей
Лекция 2 1.Идеальная жидкость. Основные определения. Движение идеальной жидкости. Уравнение неразрывности. Уравнение Бернулли. 2.Движение вязкой жидкости. Уравнение Ньютона. Формула Пуазейля. 3.Модель кровообращения Франка. Электрическая модель кровообращения. Пульсовая волна. Формула Моенса-Кортевега.
Система кровообращения служит для постоянного снабжения клеток питательными веществами и газами, для обмена продуктами жизнедеятельности клеток, а также переноса тепла. Она представляет собой разветвленную и замкнутую цепь сосудов различного калибра. В этом она сходна с водопроводной системой, также предназначена для обмена водой и теплом между источником и многочисленными потребителями. В обеих системах движущей силой является давление, создаваемое на входе в систему и в участках выхода. Этой цели служит генератор давления, которым в системе кровообращения является сердце, а в водопроводной системе – насос. Движение жидкости или крови всегда происходит от участка с более высоким давлением к участку со сниженным давлением, поэтому движение крови подчиняется тем же закономерностям, которые определяют движение жидкости в любой гидродинамической системе.
(1) Пусть по наклонной трубке тока переменного сечения движется жидкость в направлении слева направо. Мысленно выделим область трубки, ограниченную сечениями и в которых скорости течения равны соответственно и .
Определим изменение полной энергии в этой области за промежуток времени . За это время масса жидкости заключенная между сечениями и , втекает в рассматриваемую область, а масса заключенная между и, вытекает из нее. Полная энергия жидкости (2) Или (3) должна равняться работе внешних сил по перемещению массы =(4) Определим . Внешняя сила давления F1 совершает работу по перемещению втекающей массы на пути ; в то же время вытекающая масса совершает работу против внешней силы F2 на пути поэтому , , Учитывая, что и , где P1 и P2-давления на сечениях S1 и S2, получим , но Где -объем каждой из рассматриваемых масс, поэтому (5) Объединяя формулы 3, 4, 5, получим: Поделив обе части на и учитывая, что , получим Поскольку S1 и S2 выбраны произвольно - уравнение Бернулли В идеальной несжимаемой жидкости сумма динамического, гидравлического и статического давлений постоянна на любом поперечном сечении потока. Для горизонтальной трубки уравнение Бернулли принимает вид Из уравнения Бернулли и неразрывности следует, что в местах сужения трубопровода скорость течения жидкости возрастает, а давление понижается.
Рассмотрим движение жидкости между двумя твердыми пластинками, из которых нижняя неподвижна, а верхняя движется со скоростью . Слой, прилипший ко дну, неподвижен. Максимальная скорость будет у слоя, «прилипшего» к верхней пластинке. - уравнение Ньютона. -градиент скорости, S- площадь соприкасающихся слоев жидкости, -коэффициент вязкости. Жидкости, подчиняющиеся уравнению Ньютона, называются ньютоновскими. Жидкости, не подчиняющиеся уравнению Ньютона, называются неньютоновскими. Вязкость ньютоновских жидкостей называют нормальной, неньютоновских-аномальной. Кровь является неньютоновской жидкостью.
Примаеры решения задач В широкой части горизонтальной трубы вода течет со скоростью . Определить скорость течения воды в узкой части трубы, если разность давлений в широкой и узкой ее частях равна Решение Запишем уравнение Бернулли Формула Пуазейля Наибольшей скоростью обладают частицы, движущиеся вдоль оси трубы; самый близкий к трубе слой жидкости неподвижен. Для установления зависимости выделим мысленно цилиндрический объем жидкости радиуса r и длины l. На торцах этого цилиндра поддерживаются давления P1 P2, что обуславливает результирующую силу. (1) На боковую поверхность цилиндра со стороны окружающего слоя жидкости действует сила внутреннего трения, равная (2) Где -площадь боковой поверхности цилиндра. F=Fтр(3) Знак (-), так как (4) Проинтегрируем это уравнение: (5) Наибольшую скорость имеет слой, текущий вдоль оси трубы (r=0): Определим объемную скорость кровотока Q. Для этого выделим цилиндрический слой радиусом r и толщиной dr. Площадь сечения этого слоя . За 1с. Слой переносит объем жидкости (6)
(5)(6) получим - Формула Пуазейля (7) Через трубу протекает тем больше жидкости, чем меньше ее вязкость и больше радиус трубы. Формула Пуазейля аналогична закону Ома для участка цепи. Разность потенциалов соответствует разности давлений на концах трубы, сила тока-объемной скорости, электрическое сопротивление-гидравлическому сопротивлению (8) Гидравлическое сопротивление тем больше, чем больше вязкость , длина l трубы и меньше сечение. Примеры решения задач
Решение: По формуле Пуазейля
Решение: Из формулы (8) для гидравлического сопротивления
Модель позволяет установить связь между ударным объемом крови (объем крови, выбрасываемый желудочком за одну систолу), гидравлическим сопротивлением периферической части системы кровообращения х0 и изменением давления в артериях. Артериальная часть системы кровообращения моделируется упругим (эластичным) резервуаром (УР).
В УР (аретерия)поступает кровь из сердца Q. От УР кровь оттекает с о.с.к.Q0 в периферическую систему (артериолы, капилляры). Объем крови в УР зависит от P: V=V0+kP (1) Где k-упругость резервуара;V0-объем УР при P=0, из (1) (2) (3), т.е. объемная скорость кровотока из сердца равна скорости возрастания объема УР скорости оттока крови из упругого резервуара. На основании формулы Пуазейля и формулы (8) можно записать для периферии: (4), где P-давление в УР; Pв-венозное давление. При Pв=0 (5) Подставляя (2) и (5) в (3), получим (6) Во время систолы (сокращение сердца) происходит расширение УР, во время диастолы - отток крови к периферии, Q=0. Тогда (6) перепишется: Проинтегрировав (9), получаем зависимость давления в УР после систолы от времени: (8) На основе механической модели по аналогии можно построить электрическую модель. Здесь источник U переменного Эл.напряжения служит аналогом сердца, выпрямитель В-сердечного клапана. Конденсатор С в течение полупериода накапливает заряд, а затем разряжается на резистор R, так сглаживается сила тока через резистор. Действия конденсатора аналогично действию упругого резервуара, который сглаживает колебание давления крови в артериях и капиллярах. Резистор является электрическим аналогом периферической сосудистой системы. Пульсовая волна- это распространяющаяся по аорте и артериям волна повышенного давления, вызванная выбросом крови из левого желудочка в период систолы. Скорость пульсовой волны в крупных сосудах определяется выражением: , где Е-модуль упругости, - плотность вещества сосуда, h-толщина стенки сосуда, d-диаметр сосуда. Примеры решения задач
Решение: По формуле Моенса-Кортевега
Решение:
Дата добавления: 2014-01-07; Просмотров: 940; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |