КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Электромагнетизм
Лекция 5
1. Вокруг движущихся электрических зарядов (токов) возникает магнитное поле, посредством которого эти заряды взаимодействуют с магнитными или другими движущимися электрическими зарядами. Магнитное поле является силовым полем, его изображают посредством магнитных силовых линий. В отличие от силовых линий электрического поля магнитные силовые линии всегда замкнуты. Магнитные свойства вещества обусловлены элементарными круговыми токами в атомах и молекулах этого вещества. 2. Магнитное взаимодействие токов в вакууме. Закон Ампера. Магнитное взаимодействие токов изучалось с помощью подвижных проволочных контуров. Ампер установил, что величина силы взаимодействия двух малых участков проводников 1 и 2 с токами пропорциональна длинам и этих участков, силам тока I1 и I2 в них и обратно пропорциональна квадрату расстояния r между участками: ~(1)
Выяснилось, что сила воздействия первого участка на второй зависит от их взаиморасположения и пропорциональна синусам углов и . ~(2) Где -угол между и радиусом –вектором r12, соединяющим с , а -угол между и нормалью n к плоскости Q, содержащей участок и радиус –вектор r12. Объединяя (1) и (2) и вводя коэффициент пропорциональности k, получим математическое выражение закона Ампера: (3) Направление силы также определяется по правилу буравчика:6 оно совпадает с направлением поступательного движения буравчика, рукоятка которого вращается от к нормали n1. Элементом тока называется вектор, равный по величине произведению Idl бесконечно малого участка длины dl проводника на силу тока I в нем и направленный вдоль этого тока. Тогда, переходя в (3) от малых к бесконечно малым dl, можно записать закон Ампера в дифференциальной форме: (4) Коэффициент k можно представить в виде , (5) где -магнитная постоянная(или магнитная проницаемость вакуума) Величина для рационализации с учетом (5) (4) запишется в виде (6) 3Напряженность магнитного поля. Формула Ампера. Закон Био-Савара-Лапласа. Поскольку электрические токи взаимодействуют друг с другом посредством своих магнитных полей, количественную характеристику магнитного поля можно установить на основе этого взаимодействия-закона Ампера. Для этого проводник l с током I разобьем на множество элементарных участков dl. Он создает в пространстве поле. В точке О этого поля, находящуюся на расстоянии r от dl, поместим I0dl0. Тогда, согласно закону Ампера (6), на этот элемент будет действовать сила (7) Где -угол между направлением тока I на участке dl (создающем поле) и направлением радиуса-вектора r, а -угол между направлением тока I0dl0 и нормалью n к плоскости Q содержащей dl и r. В формуле (7) выделим часть, не зависящую от элемента тока I0dl0, обозначив ее через dH: (8)-закон Био-Савара-Лапласа Величина dH зависит только от элемента тока Idl, создающего магнитное поле, и о положения точки О. Величина dH является количественной характеристикой магнитного поля и называется напряженностью магнитного поля. (8)в (7) (9) Где -угол между направлением тока I0 и магнитного поля dH. Формула (9) называется формулой Ампера, выражает зависимость силы, с которой магнитное поле действует на находящийся в нем элемент тока I0dl0 от напряженности этого поля. Эта сила расположена в плоскости Q перпендикулярно dl0. Ее направление определяется по «правилу левой руки». Полагая в (9) =90º, получим (9’) Т.е. напряженность магнитного поля направлена по касательной к силовой линии поля, а по величине равна отношению силы, с которой поле действует на единичный элемент тока, к магнитной постоянной.
4. Диамагнитные, парамагнитные и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.
Все вещества, помещенные в магнитное поле, приобретают магнитные свойства, т.е. намагничиваются и поэтому изменяют внешнее поле. При этом одни вещества ослабляют внешнее поле, а другие усиливают его. Первые называются диамагнитными, вторые – парамагнитными веществами. Среди парамагнетиков резко выделяется группа веществ, вызывающих очень большое усиление внешнего поля. Это ферромагнетики. Диамагнетики - фосфор, сера, золото, серебро, медь, вода, органические соединения. Парамагнетики - кислород, азот, алюминий, вольфрам, платина, щелочные и щелочноземельные металлы. Ферромагнетики – железо, никель, кобальт, их сплавы.
Геометрическая сумма орбитальных и спиновых магнитных моментов электронов и собственного магнитного момента ядра образует магнитный момент атома (молекулы) вещества. У диамагнетиков суммарный магнитный момент атома (молекулы) равен нулю, т.к. магнитные моменты компенсируют друг друга. Однако под влиянием внешнего магнитного поля у этих атомов индуцируется магнитный момент, направленный противоположно внешнему полю. В результате диамагнитная среда намагничивается и создает собственное магнитное поле, направленное противоположно внешнему и ослабляющее его.
Индуцированные магнитные моменты атомов диамагнетика сохраняются до тех пор, пока существует внешнее магнитное поле. При ликвидации внешнего поля индуцированные магнитные моменты атомов исчезают и диамагнетик размагничивается. У атомов парамагнетиков орбитальные, спиновые, ядерные моменты не компенсируют друг друга. Однако атомные магнитные моменты расположены беспорядочно, поэтому парамагнитная среда не обнаруживает магнитных свойств. Внешнее поле поворачивает атомы парамагнетика так, что их магнитные моменты устанавливаются преимущественно в направлении поля. В результате парамагнетик намагничивается и создает собственное магнитное поле, совпадающее с внешним и усиливающим его. При ликвидации внешнего поля под действием теплового движения ориентация магнитных моментов атома нарушается и парамагнетик размагничивается.
Результирующая напряженность магнитного поля в веществе H’ равна (1) Где -напряженность поля, создаваемого самой средой. Знак (+) берется для парамагнетиков, (-) для диамагнетиков. Поскольку ~H, то (2) Где -магнитная проницаемость среды, которая характеризует ее способность намагничиваться под влиянием внешнего поля. Магнитное поле в веществе принято характеризовать индукцией магнитного поля (3) где 0-магнитная постоянная. Или (4), где -абсолютная магнитная проницаемость среды. В вакууме =1, , а В ферромагнетиках имеются области (~10-2см) с одинаково ориентированными магнитными моментами их атомов. Однако ориентация самих доменов разнообразна. Поэтому в отсутствие внешнего магнитного поля ферромагнетик не намагничен. С появлением внешнего поля домена, ориентированные в направлении этого поля, начинают увеличиваться в объеме за счет соседних доменов, имеющих иные ориентации магнитного момента; ферромагнетик намагничивается. При жостаточно сильном поле все домены переориентируются вдоль поля и ферромагнетик быстро намагничивается до насыщения. При ликвидации внешнего поля ферромагнетик полностью не размагничивается, а сохраняет остаточную магнитную индукцию, так как тепловое движение может разориентировать домены. Размагничивание может быть достигнуто нагреванием, встряхиванием или приложением обратного поля. При температуре равной точке Кюри, тепловое движение оказывается способным дезориентировать атомы в доменах, вследствие чего ферромагнетик превращается в парамагнетик. Поток магнитной индукции через некоторую поверхность S равен числу линий индукции, пронизывающих эту поверхность: (5) Единица измерение B –Тесла, Ф-Вебер.
Ткани организма диамагнитны, подобно воде. Однако в организме имеются и парамагнитные вещества, молекулы и ионы. Ферромагнитных частиц в организме нет. Биотоки, возникающие в организме, являются источником слабых магнитных полей. В некоторых случаях индукцию таких полей удается измерить. Так, например, на основании временной зависимости индукции магнитного поля сердца создан диагностический метод-магнитокардиография. Магнитное поле оказывает воздействие на биологические системы, которые в нем находятся. Это воздействие изучает магнитобиология. Имеются сведения о гибели дрозофилы в неоднородном магнитном поле, морфологических изменениях в живых организмах после пребывания а постоянном магнитном поле, о влиянии магнитного поля на нервную систему и изменение характеристик крови и т.д.
Примеры решения задач.
Решение: Очевидно, что нижний провод будет свободно висеть только в том случае, если его вес Р компенсируется силой F притяжения со стороны верхнего провода, ток в котром должен иметь такое же направление, как и в нижнем проводе. Поэтому, обозначив длину провода через l, можно записать F=P=pl, Или , где , тогда
Решение: (1)
Дата добавления: 2014-01-07; Просмотров: 329; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |