Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электрические колебания и электромагнитные волны

Лекция 8

  1. Электромагнитные волны
  2. Закрытый колебательный контур.Формула Томсона.
  3. Открытый колебательный контур. Электромагнитные волны.
  4. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине.
  5. Воздействие на организм человека переменными электрическими и магнитными полями с лечебной целью.

 

1. Согласно теории Максвелла переменное электрическое поле представляет собой совокупность переменных взаимно перпендикулярных электрических и магнитных полей, перемещающихся в пространстве со скоростью света

Где и -относительные диэлектрическая и магнитная проницаемости среды.

Распространение электромагнитного поля сопровождается переносом электромагнитной энергии.

Источниками электромагнитного поля (э/м излучения) служат всевозможные переменные токи: переменный ток в проводниках, колебательное движение ионов, электронов и др. заряженных частиц, вращение электронов в атоме вокруг ядра и т.п.

Электромагнитное поле распространяется в виде поперечной электромагнитной волны, состоящей из двух совпадающих по фазе волн-электрической и магнитной.

Длина , период T, частота и скорость распространения волны связаны между собой соотношением

Интенсивность электромагнитной волны или плотность потока электромагнитной энергии пропорциональна квадрату частоты волн.

Источником интенсивных э/м волн должны быть переменные токи высокой частоты, которые называют электрическими колебаниями. В качестве генератора таких колебаний применяется колебательный контур.

 

2. Колебательный контур состоит из конденсатора и катушки

.

Сначала заряжается конденсатор. Поле внутри него Е=Еm. В послед. Момент конденсатор начнет разряжаться. В контуре появится возрастающий ток, а в катушке возникает магнитное поле Н. По мере разрядки конденсатора его электрическое поле ослабевает, а магнитное поле катушки усиливается.

В момент времени t1 конденсатор полностью разрядится. При этом Е=0, Н=Нm. Теперь вся энергия контура будет сосредоточена в катушке. Через четверть периода конденсатор перезарядится и энергия контура от катушки перейдет к конденсатору и т.д.

Т.о. в контуре возникают электрические колебания с периодом Т; в течение первой половины периода ток идет в одном направлении, в течение второй половины периода - в противоположном направлении.

Электрические колебания в контуре сопровождаются периодическими взаимными превращениями энергий электрического поля конденсатора и магнитного поля катушки самоиндукции, подобно тому, кК механические колебания маятника сопровождаются взаимными превращениями потенциальной и кинетической энергий маятника.

Период э/м колебаний в контуре определяется формулой Томсона

,

Где L-индуктивность контура, С-его емкость. Колебания в контуре являются затухающими. Для осуществления непрерывных колебаний необходимо восполнять потери в контуре, подзаряжая конденсатор с помощью к/я приспособления.

 

3. Открытый колебательный контур представляет собой прямолинейный проводник с искровым промежутком посредине, обладающий малыми емкостью и индуктивностью.

В этом вибраторе переменное электрическое поле уже не было сосредоточено внутри конденсатора, а окружено вибратор снаружи, что существенно повышало интенсивность электромагнитного излучения.

Вибратор Герца представляет собой электрический диполь с переменным моментом.

Э/м излучение открытого вибратора 1 регистрируется с помощью второго вибратора3, имеющего такую же частоту колебаний, что и излучающий вибратор, т.е. настроенного в резонансе с излучателем и потому называемого резонатором.

Когда электромагнитные волны достигают резонатора, в нем возникают электрические колебания, сопровождающиеся проскакиванием искры через искровой промежуток.

Незатухающие электромагнитные колебания являются источником непрерывного магнитного излучения.

 

4. Из теории Максвелла вытекает, что различные электромагнитные волны, в том числе и световые, имеют общую природу. В связи с эти целесообразно представить всевозможные электромагнитные волны в виде единой шкалы.

Вся шкала условно подразделена на шесть диапазонов: радиоволны(длинные, средние и короткие), инфракрасные, видимые, ультрафиолетовые, рентгеновские и гамма-излучение.

Радиоволны обусловлены переменными токами в проводниках и электронными потоками.

Инфракрасное, видимое и ультрафиолетовое излучения исходят из атомов, молекул и быстрых заряженных частиц.

Рентгеновское излучение возникает при внутриатомных процессах, гамма-излучение имеет ядерное происхождение.

Некоторые диапазоны перекрываются, так как волны одной и той же длины могут образоваться в разных процессах. Так, наиболее коротковолновое ультрафиолетовое излучение перекрывается длинноволновым рентгеновским.

В медицине принято следующее условное разделение электромагнитных колебаний на частотные диапазоны.

 

Низкие (НЧ) До 20Гц
Звуковые (ЗЧ) 20Гц-30кГц
Ультразвуковые и надтональные (УЗЧ) 20кГц-200кГц
Высокие (ВЧ) 200кГц-30МГц
Ультравысокие (УВЧ) 30-300МГц
Сверхвысокие (СВЧ) Свыше 300МГц

 

Часто физиотерапевтическую электронную аппаратуру низкой и звуковой частоты называют низкочастотной. Электронную аппаратуру всех других частот называют обобщающим понятием высокочастотная.

Внутри этих групп аппаратов существует и своя внутренняя классификация в зависимости от их параметров и назначения.

 

5. Воздействие на организм человека переменным магнитным полем.

В массивных проводящих телах, находящихся в переменном магнитном поле, возникаю вихревые токи. Эти токи могут использоваться для прогревания биологических тканей и органов. Такой метод получил название индуктотермией.

При индуктотермии количество теплоты, выделяющееся в тканях, пропорционально квадратам частоты и индукции переменного магнитного поля и обратно пропорционально удельному сопротивлению. Поэтому сильнее будут нагреваться ткани, богатые сосудами, например, мышцы, чем ткани с жиром.

Воздействие переменным электрическим полем

В тканях, находящихся в переменном электрическом поле, возникают токи смещения и токи проводимости. Для этой цели используют электрические поля ультравысокой частоты, поэтому соответствующий физиотерапевтический метод получил название УВЧ-терапии.

Выделяющееся в теле количество теплоты можно выразить так:

(1)

Здесь Е-напряженность электрического поля

l-длина объекта, помещенного в поле

S-его сечение

его сопротивление

-его удельное сопротивление.

Разделив обе части (1)на объем Sl тела, получим количество теплоты, выделяющееся за 1с в 1м3 ткани:

(2)

Воздействие электромагнитными волнами

Применение э/м волн СВЧ диапазона-микроволновая терапия (частота 2375 МГц, =12,6см) и ДЦВ-терапия (частота 460МГц, =65,2см)

Э/м волны оказывают тепловое действие на биологические объекты. Э/м волна поляризует молекулы вещества и периодически переориентирует их как электрические диполи. Кроме того, э/м волна воздействует на ионы биологических систем и вызывает переменный ток проводимости.

Таким образом, в веществе, находящемся в электромагнитном поле, есть токи смещения, так и токи проводимости. Все это приводит к нагреванию вещества.

Большое значение имеют токи смещения, обусловленные переориентацией молекул воды. В связи с этим, максимальное поглощение энергии микроволн происходит в таких тканях, как мышцы и кровь, а в костной и жировой икании меньше, они меньше и нагреваются.

Электромагнитные волны могут влиять на биологические объекты, разрывая водородные связи и влияя на ориентацию макромолекул ДНК и РНК.

Учитывая сложный состав тканей условно считают, что при микроволновой терапии глубина проникновения электромагнитных волн равна 3-5 см от поверхности, а при ДЦВ-терапии-до 9см.

Сантиметровые э/м волны проникают в мышцы, кожу, биолгические жидкости до 2 см, в жир, кости-до 10см.

 

Примеры решения задач

1. В аппарате для УВЧ-терапии используется колебательный контур, состоящий из воздушного конденсатора с площадью пластин S=100см2 каждая и катушки с индуктивностью L=10-5 Г. Период электрических колебаний в контуре T=10-7c. Определить расстояние между пластинами конденсатора.

Решение: ,(1)(2). С другой стороны, емкость плоского конденсатора (3)

Приравнивая между собой правые части равенств, выражающих С, получим

2.В магнитотерапевтической машине используется колебательный контур, состоящий из катушки с индуктивностью L=2,5Г и двух конденсаторов, соединенных между собой параллельно, емкостью мкФ каждый. Определить период Т электрических колебаний в контуре и длину излучаемых контуром электромагнитных волн.

Решение:

Колебательный контур состоит из катушки с индуктивностью L=2,5Г и двух конденсаторов, соединенных между собой параллельно, поэтому их общая емкость С равна сумме емкостей, соединяемых конденсаторов. Поэтому . Тогда, пользуясь формулой Томсона, получим

Согласно формуле , где м/с – скорость распространения электромагнитных волн, Т-период этих волн.

Так как период э/м волн равен периоду создающих электрических колебаний, то

 

 

<== предыдущая лекция | следующая лекция ==>
Лекция 7. Ток, возбуждаемый магнитным | Лекция 2. 1. Природа света. Основные понятия оптики
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 636; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.