КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сферическая проекция
Опишем вокруг точки О сферу (рис.5.14). Пересечение нормалей к граням к граням кристалла с поверхностью сферы представляет собой сферическую проекцию нормалей граней кристалла. Полученные точки на сфере проекций называют полюсами граней. Каждой из точек сферической проекции соответствует одна из граней кристалла (рис. 5.15). Сферическую проекцию кристалла можно строить, не заменяя грани кристалла их нормалями. В этом случае все грани кристалла путем параллельного переноса перемещают в центр сферы проекции и строят следы пересечения этих граней со сферической проекцией. Каждая такая сферическая проекция представляет собой дугу большого круга. Положение любой точки на поверхности сферы можно охарактеризовать двумя сферическими координатами: широтой и долготой. Широта (полярное расстояние) отсчитывается по любому направлению от нуля (северный полюс) до 180 (южный полюс), долгота – по экватору от меридиана, принятого за нулевой (рис. 5.16). Между индексами плоскостей () и сферическими координатами и нормали к этой плоскости существует строгая математическая зависимость. Вид зависимости отличен для разных сингоний и расположений кристалла. Для кубической сингонии при условии, что одна из плоскостей куба (001) находится в плоскости проекций: , , Сферическая проекция кристалла наглядна, но практика показала, что её удобнее проектировать на плоскость. При этом пользуются стереографическими, гномостереографическими проекциями.
Дата добавления: 2014-01-07; Просмотров: 1109; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |