КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Восстановление оксидов железа монооксидом углерода
Реакции восстановления оксидов железа: + 111 кДж/кг Fe (2.1‑1) + 119 кДж/кг Fe (2.1‑2) – 125 кДж/кг Fe при t>570OC (2.1‑3) + 224 кДж/кг Fe при t>570OC (2.1‑4) Реакция 1. Окись железа соединение непрочное (см. упругость диссоциации). Реакция идет слева направо при любом содержании в газовой фазе СО и СО2 до полного израсходования одного из реагентов (возможна даже термическая диссоциация). Реакции 2 и 3. Окисел Fe3O4 более прочный. Для его восстановления необходим избыток окиси углерода в газовой фазе. В противном случае углекислота окисляет FeO до Fe3O4. Для протекания реакций отношение СО2:СО не должно быть больше определенных значений. Реакция 4. FeO является самым прочным оксидом железа. Для протекания прямой реакции необходим еще больший избыток СО и меньшее отношение СО2:СО в газовой фазе. Отсюда следует, что для каждого окисла при данной температуре существует такое соотношение восстановителя и его окисла (СО и СО2) в газовой фазе, при котором газовая фаза является нейтральной по отношению к окислу железа и продукту его восстановления, а восстановительно-окислительная реакция находится в подвижном равновесии. Так как объем газообразных продуктов реакции равен объему газа, вступающему в реакцию, состав равновесной газовой фазы не зависит от давления и меняется только с изменением температуры. Равновесные соотношения СО2:СО в газовой фазе установлены расчетами в соответствии с законами химической термодинамики и подтверждены экспериментально. Равновесные составы газовой фазы с окислами железа и железом при разных температурах могут быть представлены следующей диаграммой (рис. 2.1‑3). На оси ординат отложено содержание монооксида углерода (принято, что газовая фаза состоит из монооксида углерода и углекислого газа, поэтому в каждой точке ординаты сумма (СО2+СО) равна 100%.), а на оси абсцисс - температуры. Равновесный состав газовой фазы реакции (1), необратимо протекающей при незначительном содержании СО, практически соответствует при любой температуре 100% СО2 в газовой фазе. Поэтому линия равновесия этой реакции как бы совпадает с осью абсцисс. Равновесный состав газовой фазы реакции (2) с изменением температуры меняется по кривой 2. Равновесные составы газовой фазы реакций (3) и (4) изменяются соответственно по кривым 3 и 4. Причем кривая 3 нисходящая, а кривая 4 - восходящая. Это объясняется эндотермичностью реакции (3) (реакция протекает с затратами тепла, тепловой эффект реакции “-“) и экзотермичность реакции (4) (реакция протекает с выделением тепла, тепловой эффект реакции “+“). Повышение температуры в соответствии с принципом Ле Шателье смещает равновесие эндотермической реакции в сторону поглощения тепла, вызывает увеличение содержания СО2 и снижение содержания СО в газовой фазе (кривая 3 - нисходящая). Равновесие экзотермической реакции с повышением температуры сдвигается, наоборот, в сторону выделения тепла, увеличения содержания СО и уменьшения содержания СО2 в равновесной газовой фазе (кривая 4 -восходящая). Таким образом, каждая точка на кривой характеризует равновесие одной из реакций восстановления. Равновесные кривые делят диаграмму на три области устойчивых состояний: Fe3O4, FeO и Fe. При температурах ниже 570 ОС область FeO исчезает, происходит восстановление Fe непосредственно из Fe3O4. Любая точка вне кривых 2-4 характеризует нейтральный состав газовой смеси при данной температуре по отношению к тому веществу (окислу или железу), которое устойчиво в области расположения точки. Оно не будет ни восстанавливаться, ни окисляться. Для других веществ состав газа неравновесный, поэтому реакции пойдут в направлении образования того вещества, которое определяет название данной области. Например, если в газ, содержащий 40% СО2 и 60% СО, при температуре 900 ОС поместить Fe, FeO и Fe3O4, то без изменения останется только FeO. Fe3O4 будет восстанавливаться до FeO, а Fe - окисляться до FeO, до тех пор пока не закончатся реагенты или состав газовой фазы не станет равновесным для данной реакции. Анализ кривых равновесия реакций позволяет сделать следующие выводы: - Для восстановления гематита достаточно невысокое содержание газа восстановителя; - Восстановление FeO возможно лишь при высокой концентрации CO в газовой фазе. Причем с повышением температуры величина необходимого избытка восстановителя увеличивается; - Газ, который не может быть использован для восстановления FeO, используется для восстановления Fe3O4 до FeO. Восстановительные процессы в доменной печи не достигают рассмотренных равновесных состояний. Это обусловлено: 1. непродолжительным временем пребывания газа в печи 2. протеканием реакции взаимодействия углерода кокса и диоксида углерода кокса. Реакция распада монооксида углерода газификации углерода кокса, получившая название «реакция Белла – Будуара» в честь ее исследователей, описывается уравнением: 5) +166 мДж/кг С. (2.1‑5) Реакция обратима, протекает с изменение объема газовой фазы. Равновесие данной реакции зависит от температуры и давления. Кривая равновесных составов газовой фазы реакции 5 представлена диаграммой (рис. 2.1‑4). Кривая разделяет поле диаграммы на 2 области. В левой области реакция идет в сторону образования СО2 и сажистого С, в правой – в сторону образования СО. Реакция протекает с изменением объема газовой фазы. Поэтому с повышением давления равновесие реакции сдвигается в сторону увеличения содержания в газе углекислоты. Кривая смещается вправо, вниз. Прямая реакция – реакция распада углерода протекает при низких температурах. Скорость реакция незначительна и для достижения равновесия необходимо длительное время. Реакция практически не оказывает влияния на состав газовой фазы и восстановительные процессы, протекающие в области низких температур. Обратная реакция – реакция газификации углерода протекает при высоких температурах, отличается высокой скоростью и быстрым достижением равновесия. С ростом температур скорость этой реакции возрастает. Интенсивное развитие реакция получает при температурах 1000¼1100 ОС. Реакция оказывает значительное влияние на состав газовой фазы и восстановительные процессы, протекающие в нижней части шахты печи при высоких температурах. Совмещение диаграмм, описывающих термодинамические условия равновесия в системах Fе–О–С и С–СО–СО2 позволяет сделать следующие выводы: - Состав газа левой области препятствует течению восстановительного процесса, состав правой области - способствует. - Из-за низких скоростей протекания реакции в левой области диаграммы, она не оказывает значительного влияния на восстановительный процесс. Все количество двуокиси углерода, которое образуется в результате рассмотренных реакций, при умеренных температурах (до 700…1000 ОС) ни с чем не взаимодействует и уносится газами из печи. - Реакция оказывает существенное влияние на восстановительный процесс в правой области диаграммы. При температурах 900-1200 ОС весь, образующийся в результате восстановления железа, углекислый газ полностью расходуется по этой реакции. В низкотемпературной зоне за время опускания материала восстановление Fe2O3, Fe3O4 и части FeO успевает завершиться. В высокотемпературной зоне в нормально работающей печи восстанавливается лишь часть FeO. На основании сказанного можно просуммировать реакции 4 и 5, то есть реакции, протекающие в области высоких температур. Результирующая реакция имеет вид: 6) (2.1‑6)
Дата добавления: 2014-01-07; Просмотров: 2780; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |