КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Сила давления жидкости на криволинейные поверхности
Точка приложения силы давления жидкости на плоские стенки. Представим на рисунок 2.5 деталь предыдущего чертежа. Центр давления силы будет совпадать с центром тяжести фигуры, так как поверхностное давление , передаваясь через жидкость, равномерно распределяется по рассматриваемой площади. Что касается избыточного давления, то оно распределяется неравномерно по площади фигуры: чем глубже расположена точка фигуры, тем большее давление она испытывает; поэтому центр давления силы будет лежать ниже центра тяжести фигуры (см. точку ). Искомая сила РА является геометрической суммой сил Ра и Р. Точка DA будет лежать между точками С и D; эта точка DA найдется в результате геометрического сложения сил Ра и Р. Таким образом, вопрос сводится к отысканию точки D, определяемой координатой уD. Зная уD, мы далее, как указано выше, найдем и величину уD, определяющую положение точки DA. Расчетную зависимость для величины уD находят, исходя из следующего условия: сумма моментов составляющих элементарных сил pdS относительно оси Ох равна моменту равнодействующей силы Р относительно той же оси Ох.
Имея в виду это условие, можем написать:
Эту формулу можно переписать в виде
или
Откуда
где
момент инерции плоской фигуры относительно оси Ох, а
есть, как это уже отмечалось, статический момент плоской фигуры относительно оси Ох, Формулу (2.41) можно еще переписать в виде
или
где положительная величина е называется эксцентриситетом. Эксцентриситет
причем здесь lC есть момент инерции рассматриваемой плоской фигуры относительно горизонтальной оси, проходящей через центр тяжести фигуры. Как видно, центр давления силы Р лежит ниже центра тяжести фигуры на величину, равную е. Выше мы ограничились отысканием только одной координаты точки D (координаты yD). Однако в общем случае приходится еще определять и вторую координату (хD). Ее можно найти, исходя из уравнения моментов соответствующих сил (уравнения, аналогичного (2-86)) относительно оси Оу. Определение давления жидкости на цилиндрическую поверхность представляет собой частный случай общей задачи о давлении жидкости на криволинейные поверхности. Чтобы получить общее решение, возьмём сосуд произвольной формы и выделим его на стенке какую-либо произвольную поверхность S, ограниченную контуром AMBN. Будем искать составляющие полного давления на эту поверхность по координатным осям, выбрав, например, начало координат на свободной поверхности жидкости и расположив оси так, как это показано на чертеже. При этом ограничимся определением лишь одной составляющей Rx. Параллельной оси x, поскольку остальные составляющие можно найти аналогичным образом. Найдём проекцию поверхности S на некоторую плоскость NN, нормальную к оси x и расположенную между этой поверхностью и координатной плоскостью ZOY. Отметим, что указанную плоскость проекции NN, как и направление самой оси x, можно выбирать по-разному. На жидкость, заключённую в объёме между поверхностью S, плоскостью NN и поверхностью проектирующего цилиндра, образующие которого параллельны оси x, действуют следующие силы: тяжести (вес) Gx выделенного объёма жидкости; давления жидкости RFx на проекцию поверхности S на плоскость NN; давления на боковую поверхность указанного объема (их проекция на ось x равна нулю); реакции R со стороны поверхности S, равная по значению, но обратная по направлению искомой силе давления жидкости. Проектируя эти силы на ось x, имеем:
откуда для проекции силы реакции получаем
Аналогично находят выражения для проекции силы реакции и на другие координатные оси:
где - углы между направлением линии действия силы тяжести и осями координат x, y, z. Таким образом, получаем следующую общую теорему о давлении жидкости на криволинейную поверхность: проекция силы давления жидкости на криволинейную поверхность S на заданную ось x равна сумме проекций на эту ось веса жидкости, находящейся между поверхностью S, поверхностью проектирующего цилиндра и плоскостью проекций, нормальной к оси x, и силы давления жидкости на проекцию поверхности S на ту же плоскость проекции. Силу гидростатического давления на криволинейную поверхность определяют по формуле:
где - составляющие силы избыточного давления по соответствующим координатным осям. В случае цилиндрической криволинейной поверхности:
где Px и Py - горизонтальная и вертикальная составляющие силы P. Горизонтальная составляющая избыточного давления Px равна силе давления на вертикальную проекцию криволинейной поверхности:
где pm- манометрическое давление на поверхности жидкости; hc - глубина погружения центра тяжести вертикальной проекции криволинейной поверхности; wz - площадь вертикальной проекции криволинейной поверхности. Если манометрическое давление на свободной поверхности жидкости равно нулю (p0 = pат), то
Вертикальная составляющая Pz равна весу жидкости в объёме тела давления. Тело давления расположено между вертикальными плоскостями, проходящими через крайние образующие цилиндрической поверхности, самой цилиндрической поверхностью и свободной поверхностью жидкости или её продолжением. (рисуно 2.8)
Если давление на свободной поверхности жидкости p0 ¹ pат, то тело давления ограничивается сверху пьезометрической плоскостью, удалённой от свободной поверхности жидкости на расстояние Направление силы P определяется тангенсом угла j:
Если криволинейная поверхность не цилиндрическая, то горизонтальную составляющую Py определяют аналогично Px..
Дата добавления: 2014-01-07; Просмотров: 1118; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |