КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение Бернулли для струйки и потока реальной жидкости
Если по элементарной струйке движется реальная жидкость, то возникают силы трения и часть полной механической энергии переходит в тепловую энергию, которая в уравнении (3.24) не учитывается. Поэтому полная механическая энергия в начале струйки будет больше, чем в конце. Потерей напора или потерей полной удельной энергии h1-2 - называется разность полных удельных энергий в начале и в конце элементарной струйки.
Тогда уравнение для элементарной струйки реальной жидкости запишется:
Рассмотрим поток жидкости. Поток жидкости состоит из элементарных струек, скользящих друг относительно друга с разными скоростями. Пусть за время dt = 1 через поперечное сечение элементарной струйки проходит масса dm = r u dw. Осредним уравнение Бернулли для элементарной струйки реальной жидкости по поперечному сечению. Так, как в поперечном сечении давление распределяется по гидростатическому закону, сумма первых двух слагаемых постоянна и при осреднении не изменится. Усредняя третье слагаемое и выражая его через среднюю скорость, получим
Тогда для потока реальной жидкости уравнение Бернулли запишется:
где z – расстояние от плоскости сравнения до любой точки поперечного сечения, м; p – давление именно в этой точке, Па; v – средняя скорость в данном поперечном сечении, м/с; a – имеет три названия: коэффициент неравномерности распределения скоростей, средняя коэффициент Кариолиса, коэффициент кинетической энергии. Коэффициент неравномерности распределения скоростей определяется
Коэффициент неравномерности распределения скоростей определяется в зависимости от режимов движения жидкости
На практике обычно выбирают значение a = 1. При применении уравнения Бернулли следует придерживаться следующих правил: 1. Выбрать два поперечных сечения. Поперечные сечения выбираются по направлению движения жидкости в начале потока 1 – 1 в конце 2 - 2. Поперечные сечения выбираются там, где известны давления или где одно из давлений необходимо найти. 2. Выбирают плоскость сравнения 0 - 0. Плоскостью сравнения может служить любая горизонтальная поверхность. Обычно выбирают плоскость сравнения, проходящую через центр тяжести нижнего поперечного сечения. 3. Записывают значения z и p для поперечных сечений. Для напорных потоков (движение жидкости в трубе) за характерную точку обычно принимают центр тяжести трубы. Для безнапорных потоков (движение жидкости в реке) за характерную точку обычно принимают точку на свободной поверхности жидкости. Давление p должно иметь один и тот же тип или абсолютное в обеих частях уравнения или манометрическое. 4. Расписывают скорости в поперечных сечениях. В уравнении Бернулли, как минимум, входят три скорости: v1 – средняя скорость в первом сечении, v2 – средняя скорость во втором сечении, v – средняя скорость в трубе, которая соединяет эти сечения (от этой скорости зависят потери напора h1-2). Если известен расход, то скорости находятся:
Если расход неизвестен, то неизвестны и скорости. В этом случае удобно все скорости выразит через скорость в трубе:
Полученные значения z, p, v подставляют в уравнение Бернулли и находят неизвестную величину.
Дата добавления: 2014-01-07; Просмотров: 590; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |