Рассмотрим последовательность попарно независимые случайные величины х1,х2…….хn. Пусть все они имеют математическое ожидание и дисперсии. M[x1], D[x1] и средняя арифметическая из первых n -величин.
Распишем
. Пусть все дисперсии xn ограничены числом с, , тогда . Отсюда видно, что дисперсия от среднего → 0 при n → ¥. Применяя к неравенство Чебышева:
или заменим .
Правая часть неравенства ® 0, при n ® ¥, а левая неотрицательна, потому из данного неравенства следует что , при n ® ¥
,
.
Таким образом, теорема Чебышева утверждает, что если рассматривается довольно большое число попарно независимых случайных величин имеющих ограниченные дисперсии, то почти достоверно можно считать, что средняя арифметическая случайной величины сходятся по вероятности со средней арифметической их математического ожидания.
Частный случай – все случайные величины имеют одно и тоже M[x], тогда
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление