Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Скоростная характеристика исполнительного механизма автономного гидропривода с изменяемым объёмом гидронасоса

 

На представленном выше рисунке скоростная характеристика привода явно нелинейна в области малых сигналов. Эта нелинейность определяется наличием утечек в гидронасосе. В области малых углов наклона шайбы или блока цилиндров утечки по зазорам становятся соизмеримыми с полезным расходом жидкости, который определяется геометрией насоса. В результате скорость движения выходного звена привода, определяемая фактической подачей насоса становится меньше, чем должна была бы быть в соответствии с изменением геометрии насоса. Движение выходного звена в области малых углов поворота наклонной шайбы, составляющих 2 – 4% от максимального, становится прерывистым, сама характеристика - нелинейная.

Механическая (нагрузочная) характеристика исполнительного механизма. Эта характеристика представляет собой зависимость установившейся скорости движения выходного звена исполнительного механизма от нагрузки (F) и от уровня управляющего воздействия . Прежде чем составлять уравнения, определяющие эту характеристику, перечислим факторы, которые её определяют:

  1. Максимальная скорость холостого хода, зависящая от рабочего объёма насоса и скорости вращения ротора насоса.
  2. Эластичность механической характеристики приводного электродвигателя, которая показывает падение скорости его выходного вала под действием момента нагрузки. Эта характеристика для электродвигателя постоянного тока имеет вид, показанный на рис.2.4.

Рис.2.4

К пояснению физического смысла коэффициента эластичности механической характеристики приводного электродвигателя постоянного тока.

 

  1. Утечки рабочей жидкости, возникающие под действием давления на выходе насоса. Поскольку при преодолении внешней нагрузки давление повышается лишь в одной полости, а во второй полости, соединённой с полстью компенсатора поддерживается постоянным и равным давлению Рком, то можно считать, что утечки пропорциональны нагрузке:

. (2.8)

Здесь Рi – давление в полости нагнетания, т.е. – на выходе насоса.

Таким образом, соотношение, определяющее механическую характеристику исполнительного механизма, можно представить в виде следующего уравнения:

. (2.9)

В этом выражении появилось новое неизвестное – момент на валу электродвигателя - Мэд. Момент на валу электродвигателя создаётся гидравлическими силами, действующими на каждый из поршней блока цилиндров и передающихся на вал насоса. Можно показать, что средний момент на валу насоса, который передаётся на вал электродвигателя, представляется следующим выражением:

. (2.10)

Здесь Рн=F/Ап. Подставив это выражение в уравнение механической характеристики, и учитывая потери на трение в механических элементах насоса (ηм), получим выражение для механической (нагрузочной) характеристики исполнительного механизма автономного привода с аксиально-поршневым насосом:

. (2.11)

Для того, что бы построить график механической характеристики исполнительного механизма необходимо ещё определить максимальную силу, развиваемую гидроцилиндром. Эта сила равна:

. (2.12)

В этом выражении Рmax – максимальное давление, которое может быть создано в камере гидроцилиндра. Это давление ограничивается предохранительными клапанами Рmax=Рк. Следовательно, максимальная сила на выходном звене привода равна:

. (2.13)

График механической характеристики типового исполнительного механизма имеет вид, примерно такой, какой показан на рис.2.5.

Рис.2.5

<== предыдущая лекция | следующая лекция ==>
Автономные электрогидравлические приводы и перспективы их развития | 
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 516; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.