Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Работа силы. Мощность

Изучение данных вопросов необходимо для динамики движения центра масс механической системы, динамики вращательного движения твердого тела, кинетического момента механической системы, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

Лекция 2. Работа. Мощность. Теорема об изменении кинетической энергии точки.

В данной лекции рассматриваются следующие вопросы:

  1. Работа силы.
  2. Мощность.
  3. Примеры вычисления работы.
  4. Потенциальная энергия
  5. Кинетическая энергия
  6. Теорема об изменении кинетической энергии точки.
  7. Теорема моментов.

 

Для характеристики действия, оказываемого силой на тело при некотором его перемещении, вводится понятие о работе силы.

Рис.16

 

При этом работа характеризует то действие силы, которым определяется изменение модуля скорости движущейся точки.

Введём сначала понятие об элементарной работе силы на бесконечно малом перемещении ds. Элементарной работой силы (рис.16) называется скалярная величина:

,

где - проекция силы на касательную к траектории, направленную в сторону перемещения точки, а -бесконечно малое перемещение точки, направленное вдоль этой касательной.

Данное определение соответствует понятию о работе, как о ха­рактеристике того действия силы, которое приводит к изменению модуля скорости точки. В самом деле, если разложить силу на составляющие и , то изменять модуль скорости точки будет только составляющая , сообщающая точке касательное ускорение Составляющая же или изменяет направление вектора скорости v (сообщает точке нормальное ускорение), или, при несвободном дви­жение изменяет давление на связь. На модуль скорости составляю­щая влиять не будет, т.е., как говорят, сила «не будет про­изводить работу».

Замечая, что , получаем:

. (1)

Таким образом, элементарная работа силы равна проекции силы на направление перемещения точки, умноженной на элементар­ное перемещение или элементарная работа силы равна произведению модуля силы на элементарное перемещение и на косинус угла между направлением силы и направлением перемещения.

Если угол острый, то работа положительна. В частности, при элементарная работа .

Если угол тупой, то работа отрицательна. В частности, при элементарная работа .

Если угол , т.е. если сила направлена перпендикулярно перемещению, то элементарная работа силы равна нулю.

Найдем аналитическое выражение элементарной работы. Для этого разложим силу на составляющие , , по направлениям координатных осей (рис.17; сама сила на чертеже не показана).

Рис.17

 

Элементарное перемещение слагается из перемещений , , вдоль координатных осей, где x, y, z - координаты точки М. Тогда работу силы на перемещении можно вычислить как сумму работ её составляющих , , на перемещениях , , .

Но на перемещении совершает работу только составляющая , причем её работа равна . Работа на перемещениях и вычисляется аналогично. Окончательно находим: .

Формула дает аналитическое выражение элементарной работы силы.

Работа силы на любом конечном перемещении М 0 М 1 вычисляется как интегральная сумма соответствующих элементарных работ и будет равна:


или

.

Следовательно, работа силы на любом перемещении М 0 М 1 равна взятому вдоль этого перемещения интегралу от элементарной работы. Пределы интеграла соответствуют значениям пере­менных интегрирования в точках М 0 и М 1.

Рис.18

Если величина постоянна ( = const), то и обозначая перемеще­ние М 0 М 1 через получим: .

Такой случай может иметь место, когда действующая сила постоянна по модулю и направлению (F = const), а точка, к ко­торой приложена сила, движется прямолинейно (рис.18}. В этом случае и работа силы .

Единицей измерения работы в системе СИ является джоуль (1 дж= 1 hm).

 

<== предыдущая лекция | следующая лекция ==>
Общие теоретические вопросы перевода | Мощность
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 531; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.