КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Примеры вычисления работы
Рассмотренные ниже примеры дают результаты, которыми можно непосредственно пользоваться при решении задач. 1) Работа силы тяжести. Пусть точка М, на которую действует сила тяжести , перемещается из положения М0 (x0, у0, z0) в положение M1 (х1, у1, z1). Выберем оси координат так, чтобы ось Oz была направлена вертикально вверх (рис.19). Рис.19 Тогда Р x=0, Р y=0, P z= - Р. Подставляя эти значения и учитывая переменную интегрирования z: . Если точка M 0 выше М 1, то , где h -величина вертикального перемещения точки; Если же точка M 0 ниже точки M 1 то . Окончательно получаем: . Следовательно, работа силы тяжести равна взятому со знаком плюс или минус произведению модуля силы на вертикальное перемещение точки ее приложения. Работа положительна, если начальная точка выше конечной, и отрицательна, если начальная точка ниже конечной. Из полученного результата следует, что работа силы тяжести не зависит от вида той траектории, по которой перемещается точка ее приложения. Силы, обладающие таким свойством, называются потенциальными. 2) Работа силы упругости. Рассмотрим груз М, лежащий на горизонтальной плоскости и прикрепленный к свободному концу некоторой пружины (рис.20,а). Отметим на плоскости точкой О положение, занимаемое концом пружины, когда она не напряжена ( - длина ненапряженной пружины), и примем эту точку за начало координат. Если теперь оттянуть груз от равновесного положения О, удлинив пружину до величины , то на груз будет действовать сила упругости пружины F, направленная к точке О.
Рис.20
По закону Гука величина этой силы пропорциональна удлинению пружины . Так как в нашем случае , то по модулю . Коэффициент с называется коэффициентом жесткости пружины. В технике обычно измеряют величину с в H/см, полагая коэффициент с численно равным силе, которую надо приложить к пружине, чтобы растянуть ее на 1 см. Найдем работу, совершаемую силой упругости при перемещении груза из положения в положение . Так как в данном случае , , то получим: . (Этот же результат можно получить по графику зависимости F от х (рис.20, б), вычисляя площадь заштрихованной на чертеже трапеции и учитывая знак работы.) В полученной формуле представляет собою начальное удлинение пружины , а конечное удлинение пружины . Следовательно, , т.е. работа силы упругости равна половине произведения коэффициента жесткости на разность квадратов начального и конечного удлинений (или сжатий) пружины. Работа будет положительной, когда , т. е. когда конец пружины перемещается к равновесному положению, и отрицательной, когда , т.е. конец пружины удаляется от равновесия положения. Можно доказать, что формула остается справедливой и в случае, когда перемещение точки М не является прямолинейным. Таким образом, оказывается, что работа силы F зависит только от значений и и не зависит от вида траектории точки М. Следовательно, сила упругости также является потенциальной.
Рис.21 3) Работа силы трения. Рассмотрим точку, движущуюся по какой-нибудь шероховатой поверхности (рис. 21) или кривой. Действующая на точку сила трения равна по модулю fN, где f -коэффициент трения, а -нормальная реакция поверхности. Направлена сила трения противоположно перемещению точки. Следовательно, Fтр=-fN и по формуле . Если величина силы трения постоянна, то , где s -длина дуги кривой М 0 М 1 по которой перемещается точка. Таким образом, работа силы трения при скольжении всегда отрицательна. Величина этой работы зависит от длины дуги М 0 М 1. Следовательно, сила трения является силой непотенциальной. 4) Работа силы, приложенной к телу, вращающемуся вокруг неподвижной оси. В этом случае (рис.22) точка приложения силы движется по окружности радиуса r. Элементарная работа, по (1), , где . Рис.22
Поэтому . Но . Это нетрудно установить, разложив силу на три составляющие (рис. 22). (Моменты сил и равны нулю). Значит, (2) В частности, если момент силы относительно оси , работа силы при повороте тела на угол равна . (3) Знак работы определяется знаками момента силы и угла поворота. Если они одинаковы, работа положительная. Из формулы (3) следует и правило определения работы пары сил. Если пара с моментом m расположена в плоскости перпендикулярной оси вращения тела, то ее работа при повороте тела на угол . (4) Если же пара сил действует в плоскости не перпендикулярной оси вращения, то ее надо заменить двумя парами. Одну расположить в плоскости перпендикулярной оси, другую – в плоскости параллельной оси. Моменты их определяются разложением вектора момента по соответствующим направлениям: . Конечно работу будет совершать только первая пара с моментом , где – угол между вектором и осью вращения z, . (5)
Дата добавления: 2014-01-07; Просмотров: 578; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |