КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Способы представления и параметры
Анализ и расчет линейных цепей синусоидального тока Переменный ток (напряжение) – это ток (напряжение), изменяющийся во времени либо по величине, либо по направлению, либо и по величине и по направлению. Частным случаем переменного тока является периодический ток. Минимальный промежуток времени, по истечении которого повторяются мгновенные значения в том же порядке, называется периодом T [с] функции. Синусоидальные токи и напряжения – это частный случай периодических токов и напряжений: Величину обратную периоду называют частотой: [Гц]. Периодические токи и напряжения характеризуются: - амплитудным значением (Im, Um) – максимальным значением за период; - средним значением (I0,, IСР, U0 ,, UСР) ; - средневыпрямленным значением (Iср. в., Uср. в.) ; - действующим значением (I, U, Е, J).
Действующим значением периодического тока называется такая величина постоянного тока, которая за период оказывает такое же тепловое действие, что и периодический ток. Пусть тогда мгновенная мощность переменного тока: . Энергия, выделяющаяся за период в сопротивлении . Пусть по тому же сопротивлению R протекает постоянный ток, тогда мгновенная мощность постоянна: . Приравнивая энергии и , получим величину постоянного тока, оказывающего такое же тепловое действие, что и периодический ток, т.е. действующее значение периодического тока: . Аналогично записывают формулу для действующего значения напряжения. Активная мощность Р - это среднее значение мгновенной мощности за период: . Наиболее распространенным периодическим током является синусоидальный ток. Это связано с тем, что периодические сигналы, встречающиеся в электротехнике, можно представить в виде суммы синусоидальных функций кратных частот (ряд Фурье) и синусоидальный режим является наиболее экономичным режимом в цепях (минимальные потери). В стандартной форме синусоидальные токи и напряжения записывают следующим образом: и - и - амплитудные значения, - - называется фазой и показывает состояние, в котором находится изменяющаяся величина. - - угловая частота, - - начальная фаза, т.е. фаза в момент начала отсчета времени. На графике начальную фазу определяют от момента перехода синусоиды с отрицательных значений к положительным до начала координат. Два колебания одинаковой частоты совпадают по фазе, если у них одинаковые начальные фазы; сдвинуты по фазе, если у них разные начальные фазы. Синусоида с большей начальной фазой опережает синусоиду с меньшей начальной фазой. Если сдвиг фаз равен говорят, что синусоиды в противофазе. Если сдвиг фаз , то синусоиды в квадратуре. Для синусоидальных колебаний имеем: Интеграл от второго слагаемого =0 (см. вывод среднего значения). В цепях синусоидального тока и напряжения мощность в каждый момент времени различна. Поэтому из равенства теплового действия выводят понятие активной мощности Р.
3.2 Элементы R,L,C в цепи синусоидального тока Пусть через каждый элемент протекает синусоидальный ток . Тогда, согласно компонентным уравнениям и с учетом синусоидальности тока получаем: ; ; Напряжения на элементах в цепи синусоидального тока так же синусоидальны и имеют ту же частоту, но другие амплитуды и начальные фазы. Учитывая стандартную запись напряжения , получаем
Напряжение на сопротивлении совпадает с током по фазе, напряжение на емкости отстает от тока на 900, напряжение на индуктивности опережает ток на 900. Определим мгновенную и активную мощности на каждом элементе: ; ; .
для R
для L
для C
Таким образом, мгновенная мощность во всех элементах изменяется с двойной частотой тока. Однако мгновенная мощность в сопротивлении R содержит еще постоянную составляющую, поэтому активная мощность получается больше нуля. Индуктивность и емкость активной мощности не потребляют: половину периода мощность поступает от внешней цепи, а во вторую половину периода эти элементы отдают мощность во внешнюю цепь. В те моменты времени, когда индуктивность потребляет активную мощность, емкость генерирует её и наоборот. Так как сопротивление R потребляет активную мощность, то его называют активным сопротивлением. Индуктивность и емкость активной мощности не потребляют, поэтому их называют реактивными сопротивлениями и обозначают соответственно [Oм] и [Oм]. Для расчета режима в цепи синусоидального тока можно записать систему уравнений по законам Кирхгофа, используя полученные соотношения между напряжением и током на элементах. Это будет система тригонометрических уравнений. Уравнения будут содержать синусоиды различной амплитуды и начальной фазы и необходимо проводить много тригонометрических преобразований, что не всегда удобно. Поэтому разработан специальный метод анализа режимов цепей синусоидального тока – метод комплексных величин или символический метод.
Дата добавления: 2014-01-07; Просмотров: 329; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |