Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Оценка генеральной доли и генеральной средней по собственно-случайной выборке. Несмещенность и состоятельность оценок

ЛЕКЦИЯ 10

Тема 9: Оценка доли признака и генеральной средней

ПЛАН

1. Оценка генеральной доли и генеральной средней по собственно-случайной выборке. Несмещенность и состоятельность оценок.

2. Оценка генеральной дисперсии по собственно-случайной выборке. Исправленная выборочная дисперсия.

3. Понятие доверительного интервала и доверительной вероятности оценки.

4. Средняя квадратическая ошибка выборки при оценке генеральной доли и генеральной средней.

5. Определение необходимого объема повторной и бесповторной выборок.

Пусть генеральная совокупность содержит N элементов, из которых M элементов обладает некоторым признаком А. Необходимо найти оценку генеральной доли . В качестве такой возможной оценки параметра р рассмотрим его статистический аналог – выборочную долю .

Теорема 1. Выборочная доля повторной выборки является несмещенной и состоятельной оценкой генеральной доли , причем ее дисперсия , где q =1- p.

Доказательство. Математическое ожидание и дисперсия частости события в n независимых повторных испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью p, равны соответственно M(w)= p, D(w)=s w 2= pq / n. Из первого равенства следует, что выборочная доля w есть несмещенная оценка генеральной доли р; из второго равенства получаем ее дисперсию.

Состоятельность оценки следует непосредственно из теоремы Бернулли , или .

Теорема 2. Выборочная доля бесповторной выборки является несмещенной и состоятельной оценкой генеральной доли , причем ее дисперсия , где q =1- p.

<== предыдущая лекция | следующая лекция ==>
Понятие об оценке параметров генеральной совокупности. | Оценка генеральной средней по собственно-случайной выборке
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1945; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.