Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 16. 3этап. Установление g (гаммы) монитора

Лекция 15

3 этап. Установление g (гаммы) монитора. Существует нелинейная связь между сигналом, подаваемым на электронную пушку монитора (ток), и той яркостью, с которой светится монитор. Для того чтобы привести эту связь к линейным значениям необходимо ввести коррекцию. Зависимость между яркостью монитора и сигналом, подаваемым на монитор, выражается следующей формулой:


Для того, чтобы сделать эту зависимость линейной необходимо ввести нужную g:

g - выбирается»1,8 для мониторов, работающих с компьютерами на платформе Macintosh;

g - выбирается» 2,2 для мониторов, работающих с компьютерами на платформе PS.

Разница в g видимо объясняется особенностью видео карт. В настоящее время ведется тенденция к одинаковой g.

Эта коррекция позволяет обеспечить линейную связь между поступающим и формирующимся сигналом. Правильная установка g в достаточной степени дает возможность точной передачи цвета на экране монитора.

II. Однако, для более точной коррекции цвета на экране монитора и корректного представления его в колориметрических координатах, необходимо провести стадию технологической калибровки монитора. Эта стадия заключается в построении ICC профиля монитора и является одним из звеньев системы управления цветом.

Для осуществления такой калибровки используется соответствующие аппаратные и программные средства. В качестве аппаратных средств используется специальные экранные колориметры. Этот колориметр помещают на экран монитора. Место для такого размещения определяют с помощью программы калибровки, которая показывает это место, высвечивая его на экране. Затем эта же программа калибровки последовательно высвечивает на экране монитора палитру цветовых выкрасок, которая может состоять из несколько десятков полей.

Колориметр оценивает колориметрические координаты, полученных на экране выкрасок и направляет эти данные в управляющий компьютер. Компьютер производит сравнение полученных координат Lab с теми же координатами, записанными в Preferans программы, то есть в памяти программы. На основе сопоставления колориметрических данных генерируемой шкалы на экране монитора и реальных полученных координат этой шкалы строится ICC профиль монитора, который обеспечивает колориметрически точное воспроизведение цветов на экране монитора.

Профиль монитора запоминается в программной папке ColorSync и соответственно подключается в процессе отображения информации.

III. Калибровка монитора для правильного отображения информации, которая будет получаться в реальном печатном процессе.

На этой стадии создаются условия для того, чтобы монитор отражал те результаты, которые мы в конечном итоге получим на печатном оттиске. Такое отображение позволяет уже на экране монитора увидеть результаты печатного процесса и вносить корректировку с учетом этих результатов.

Выполняется практически автоматически, если обрабатывающая станция имеет информацию о реальном профиле печатного процесса. Способ построения профиля рассматривался ранее. Задачей является подключение профиля при передаче сигнала на экран монитора.

В результате проведения технической калибровки монитора на его экране получаем:

1. максимальный цветовой охват;

2. колориметрически точное отображение цвета (если сигнал изображения выражается в Lab);

3. возможность наблюдения и соответствующее корректирование.

 

Калибровка монитора без использования специальных аппаратных средств (по разработкам фирмы Gretag)

Эта система основана на визуальном сравнении цветов генерируемых выкрасок с эталонными образцами, изготовленными на прозрачной пленке. По этой системе калибровки программное обеспечение генерирует на экране цветной образец рядом с этим цветным образцом наклеивается выполненный на прозрачной основе образец этого же цвета. Оператор визуально оценивает совпадение или несовпадение цвета. При несовпадении производится регулировка параметров генерируемой выкраски вплоть до полного совпадения цвета. Результаты такой регулировки запоминаются и служат основой для построения профиля корректирующего сигнала цвета. Процесс повторяется несколько раз и на основе этих данных строится профиль.

Минусами метода являются:

1. малое число точек для генерирования профиля;

2. недостаточная точность визуального сравнения

Плюсом является дешевизна метода.

Калибровка монитора и его эксплуатация должна осуществляться в помещении, которое обеспечивает отсутствие интенсивного внешнего освещения экрана и тем более какую-то окраску этого освещения. Окна должны быть затемнены, стены окрашены в нейтральный серый цвет. Цветовая температура освещения помещения должна быть близка к цветовой температуре экрана монитора.

 

Коррекция изображения в обрабатывающей станции

Коррекция градации цвета

При разделении цветного изображения по 3 каналам, то есть при первичном цветоделении могут возникать недостатки цветоделения, которые по своей сути одинаковы с теми недостатками, которые возникают в процессе фотографического цветоделения.

Базовые недостатки цветоделения

Базовые недостатки цветоделения связаны с тем, что краски полиграфического обладают рядом недостатков и отличаются от идеальных красок. Голубая краска имеет избыточное поглощение в синей и зеленой зонах и недостаточное поглощение в красной зоне. Пурпурная краска имеет избыточное поглощение в синей зоне и недостаточное поглощение в зеленой зоне. Желтая краска по своей характеристике наиболее близка к идеальной.

В результате этих недостатков красок в процессе цветоделения вследствие избыточности поглощения голубой краски в синей и зеленой зонах эта краска выделяется не только за красным светофильтром, но также за синим и зеленым. Это приводит к тому, что если не принять специальных мер коррекции, голубая краска выделится на синефильтровой и зеленофильтровой фотоформе будет запечатываться соответственно желтой и пурпурной краской.

Соответственно избыточное поглощение пурпурной краски в синей зоне будет приводить к выделению этой краски на синефильтровой фотоформе и, следовательно, желтая краска будет ложиться на пурпурные места.

Эти недостатки цветоделения называются базовыми. Для устранения этих недостатков при фотографическом цветоделении используются методы маскирования.

 

Устранение недостатков базового цветоделения в цифровой обработке

В принципах цифровой обработки эти недостатки могут устраняться путем вычитания электрических сигналов соответствующих каналов друг из друга, то есть по сути дела могут выполняться процессы аналогичные процессам фотографического маскирования, но выполненные электронным путем. Такие методы использовались в цветокорректорах предыдущего поколения.

Однако в современных системах цифровой обработки использующих методы построения ICC профилей эти базовые недостатки цветоделения устраняются процессом самого использования ICC профиля для перехода от колориметрических системы координат Lab к системе координат CMYK.

Если цветовой охват репродукции больше цветового охвата оригинала, то профиль печатного процесса (ICC) обеспечивает нам такое преобразование координат Lab в координаты СМУК, которые в реальном печатном процессе дадут нам значения колориметрич координат соответствующие значениям колориметрическим координатам, установленным нами в обрабатывающей станции. То есть если на экране монитора выбрали некоторые цветовые параметры изображения. Эти цветовые параметры будут в дальнейшем на выходе преобразованы в координаты СМУК, но поскольку мы построили профиль, то наши координаты Lab будут соответствовать определенным СМУК. Таблица пересчета позволяет устранить недостатки, которые возникают из-за недостатков красок.

По сути дела, при правильной настройки системы и правильной работе в соответствующих цветовых пространствах задача базовой коррекции решается автоматически и дополнительных мер по базовой коррекции принимать нет необходимости. В этом случае если цветовой охват репродукции больше чем цветовой охват оригинала, то цвета оригинала будут правильно переданы цветами печатного оттиска.

Важным условием является также не только технологическая настройка допечатного процесса, а также поддержание стабильности формного и печатного процессов.

Однако, возможны другие задачи цветовой коррекции, которые не решаются автоматически:

1. задача цветовой коррекции и соответственно градационной коррекции при условии, что цветовой охват оригинала больше цветового охвата полиграфического процесса, то есть задача создания психологической точности репродукции при необходимости сжатия информации.

2. Эта задача редакционной коррекции цвета, которая возникает достаточно часто при неудовлетворенности качественными характеристиками оригинала.

3. Задача цветовой коррекции для психологической точности воспроизведения рассматривалась ранее.

 

Задача редакционной коррекции цвета

Эта задача вместе с тем может быть трактована и как задача коррекции с точки зрения психологической точности, так как при коррекции по закону психологической точности часто ставится вопрос о необходимости коррекции насыщенности цвета для его ввода в цветовой охват репродукции.

Методы редакционной коррекции цвета

При редакционной коррекции цвета обычно ставится задача селективной цветовой коррекции, то есть коррекции цвета по отдельным цветам изображения, по группам цветов, если корректируемые цвета отличаются повышенной насыщенностью, то есть производится коррекция цвета по отдельным признакам: по насыщенности или цветовому тону.

Селективная цветовая коррекция позволяет корректировать цвет не всего изображения, а отдельных участков изображения, отличающихся по цветовому тону и насыщенности.

Рассмотрим вопрос о селективной цветовой коррекции на примере программы LinoColor.

В программе LinoColor предусмотрено следующие типы селективной цветовой коррекции:

1. секторная коррекция. Эта селективная цветовая коррекция позволяет изменять цвет по цветовому тону или насыщенности при этом воздействие производится на некоторую группу цветов ограниченных некоторым сектором плоскости цветности. Например, хотим обработать цвет лица. Он относится какому-то сектору плоскости цветности. Мы активизируем этот сектор и в нем изменяем необходимые цвета. При этом воздействие осуществляется на все цвета, находящиеся в данном секторе и не затрагивает другие сектора.

Преимуществом такой коррекции является мягкость цветовых переходов между корректируемыми и некорректируемыми секторами плоскости цветности, отсутствие появления каких-либо ложных границ в изображении.

2. точечная коррекция. Мы корректируем цвет определенной точки цветового пространства, при этом корректируются все точки, имеющие такой цвет. Такая коррекция может привести к резкому выделению корректируемого цвета из окружающего пространства, то есть такая коррекция может привести к появлению ложных границ. Поэтому такая селективная коррекция обычно применима для изменения цвета каких-либо участков, имеющих постоянный цвет и, как правило, ограниченных какими-либо четкими границами.

3. селективная цветовая коррекция в выбранной зоне. Она является промежуточной между 1 и 2. При такой цветовой коррекции мы сами определяем ту зону цветового пространства, которое хотим подвергнуть коррекции по цвету. Пример, для того чтобы откорректировать морковку и не затронуть участки изображения внутри которых есть близкие по цвету участки, мы выбираем цветовую точку внутри морковки, затем начинаем расширять эту цветовую зону путем расширения этой точки. Проводим расширение до тех пор, пока не будет перекрыт диапазон участка, но не будут затронуты участки, которые имеют близкие цвета. Эту коррекцию можно проводить как по цветовому тону, так и по насыщенности используя соответствующие координаты LCH или HSB.

Возможен предварительный анализ путем выделения тех цветов, которые находятся вне цветового охвата репродукции. Для этого существует специальная подпрограмма выделения неохватных цветов. Эти участки могут быть подвергнуты селективной цветовой коррекции по методам 1 и 3 и соответственно, таким образом может быть изменена насыщенность и эти участки изображения могут быть введены в цветовой охват репродукции без потери резкости деталей изображения.

Такая селективная коррекция, как правило, освобождает от необходимости использования специальных масок выделяющих геометрическую площадь. Применение таких масок стоит избегать вследствие того, что геометрическое выделение области чревато появлением ложных границ в изображении, которые потом необходимо дополнительно размывать, теряя резкость изображения.

 

Лекция 17

<== предыдущая лекция | следующая лекция ==>
Функции и структура обрабатывающей станции | Селективная коррекция
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 223; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.033 сек.