КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Взаимодействие проводников с током. Закон Ампера
Постоянное магнитное поле. МАГНИТОСТАТИКА Лекция 8 Магнитостатика – раздел электродинамики, изучающий взаимодействие постоянныхэлектрических токов и магнитные поля, создаваемые этими токами.
Известно, что постоянный магнит оказывает действие на проводник с током (например, рамку с током); известно также обратное явление – проводник с током оказывает действие на постоянный магнит (например, на магнитную стрелку компаса) – рис.8.1.
Рис.8.1. Действие постоянного магнита на рамку с током и проводника с током на магнитную стрелку компаса.
Естественно поставить вопрос: а не может ли один проводник с током оказывать непосредственное действие на другой проводник с током? Положительный ответ на этот вопрос дал в 1820г. Ампер (Ampere A., 1775-1836), установивший силовой закон взаимодействия проводников с током. Рис.8.2. Взаимодействие двух прямолинейных проводников с током. Так, два прямолинейных параллельных проводника (рис.8.2) притягиваются, если токи в них текут в одном направлении и отталкиваются, если токи имеют противоположное направление. Для того, чтобы сформулировать закон Ампера в современном виде, введем понятие элемента тока как вектора, равного произведению силы тока I на элемент длины проводника (рис.8.3). Элемент тока в магнитостатике играет ту же роль, что и точечный заряд в электростатике. Рис.8.3. Элемент тока.
Своими опытами Ампер установил, что сила взаимодействия двух элементов тока: 1) ; 2) ; 3) - зависит от взаимной ориентации элементов тока. Объединяя эти результаты, можем написать закон Ампера в виде:
Углы θ1 и θ2 характеризуют ориентацию элементов тока (рис.8.4); Коэффициент пропорциональности k зависит от выбора системы единиц измерения. Рис.8.4. Взаимодействие двух элементов тока. В системе СИ: , где - магнитная постоянная. Закон Ампера является аналогом закона Кулона в магнитостатике и выражает собой силу взаимодействия двух элементов тока. Однако в отличие от закона Кулона, он имеет более сложное написание, что обусловлено тем, что элемент тока (в отличие от точечного заряда) характеризуется не только величиной, но и направлением в пространстве. Заметим, что согласно закону Ампера (см. рис.8.4). Это кажущееся противоречие с третьим законом Ньютона связано с тем, что в действительности мы имеем дело не с элементами токов, а с замкнутыми макроскопическими токами, для которых третий закон Ньютона выполняется. В векторной форме закон Ампера записывается следующим образом:
.
Дата добавления: 2014-01-07; Просмотров: 1826; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |