Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Движение заряженной частицы в однородном постоянном магнитном поле

В данном случае и сила Лоренца имеет только магнитную составляющую . Уравнением движения частицы, записанном в декартовой системе координат, в этом случае является:

.

 

Рассмотрим сначала случай, когда частица влетает под прямым углом к силовым линиям магнитного поля (рис.13.3).

Рис.13.3. Движение заряженной частицы в магнитном поле ().

 

 

В системе координат, показанной на рис.13.3, , , и уравнение движения принимает вид:

 

,

откуда следует, что вектор полного ускорения частицы лежит в плоскости, перпендикулярной вектору . Легко убедиться также в том, что вектор ускорения перпендикулярен вектору скорости частицыи составляет вместе с вектором правую тройку векторов (как и должно быть по свойствам силы Лоренца). Действительно,

.

Таким образом, ускорение частицы в каждый момент времени t направлено к центру кривизны траектории и играет роль нормального (центростремительного) ускорения. Модуль ускорения равен:

.

Траекторией движения является окружность, радиус R которой находим из условия: , то есть , откуда:

.

Период обращения частицы

Отметим, что период обращения и соответственно угловая скорость движения частицы не зависят от линейной скорости .

Рассмотрим теперь случай, когда частица влетает под углом α к силовым линиям магнитного поля (рис.13.4).


Рис.13.4. Общий случай движения заряженной частицы в однородном магнитном поле.

Разложим вектор скорости на две составляющие: - параллельную вектору и - перпендикулярную . Поскольку составляющая силы Лоренца в направлении равна нулю, она не может повлиять на величину . Что касается составляющей , то этот случай был рассмотрен выше. Таким образом, движение частицы можно представить как наложение двух движений: одного – равномерного перемещения вдоль направления силовых линий поля со скоростью , второго – равномерного вращения в плоскости, перпендикулярной . В итоге траекторией движения будет винтовая линия (рис.13.4).

Шаг винтовой линии определяется по формуле:

, где .

Радиус витка находим по формуле:

Направление, в котором закручивается винтовая линия, зависит от знака заряда частицы. Если заряд частицы положительный, то винтовая линия закручивается против часовой стрелки, если смотреть вдоль направления , и наоборот – по часовой стрелке, если заряд частицы отрицательный.

<== предыдущая лекция | следующая лекция ==>
Движение заряженной частицы в однородном постоянном электрическом поле | Практические применения силы Лоренца. Эффект Холла
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 429; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.