КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Свободные затухающие колебания. Добротность колебательного контура
Всякий реальный колебательный контур обладает сопротивлением (рис.16.3). Энергия электрических колебаний в таком контуре постепенно расходуется на нагревание сопротивления, переходя в джоулево тепло, вследствие чего колебания затухают.
Рис.16.3. Колебательный RLC-контур.
Уравнение свободных затухающих колебаний можно получить, исходя из того, что в отсутствии внешнего источника напряжения, сумма падений напряжений на индуктивности, емкости и сопротивлении равна нулю для любого момента времени: или, поскольку, . Введя обозначение , этому уравнению можно придать вид:
, где . Решение полученного уравнения имеет вид:
где
Мы видим, что частота свободных затухающих колебаний ω′ меньше собственной частоты ω0. Подставив значения ω0 и β, получим: Амплитуда затухающих колебаний заряда конденсатора q0(t) уменьшается со временем по экспоненциальному закону (рис.16.4). Коэффициент β называется коэффициентом затухания. Рис.16.4. Изменение заряда конденсатора со временем в RLC-контуре.
Затухание колебаний принято характеризовать декрементом колебаний λ, определяемым как: . Легко видеть, что декремент колебаний обратен по величине числу колебаний Ne, совершаемых за время, в течение которого амплитуда колебаний уменьшается в е раз: λ=1/Ne. Добротностью колебательного контура называется величина: Из этой формулы видно, что добротность тем выше, чем меньше коэффициент затухания β. При малых затуханиях (λ<<1) можно приближенно считать, что . Амплитуда тока в контуре, как и заряд на конденсаторе, убывает со временем по закону . Энергия W, запасенная в контуре, пропорциональна квадрату амплитуды тока (или квадрату напряжения на конденсаторе). Следовательно, W убывает со временем по закону e-2βt. Относительное уменьшение энергии за период колебания Т (при малом затухании) есть: . Таким образом, потери энергии в колебательном контуре тем меньше, чем выше его добротность.
Дата добавления: 2014-01-07; Просмотров: 1026; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |