КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Упругие волны в твердых телах. Аналогия с электромагнитными волнами
Законы распространения упругих волн в твердых телах вытекают из общих уравнений движения однородной упруго деформированной среды: , где ρ – плотность среды; ui – компоненты вектора упругого смещения; σik = ciklmεlm – тензор напряжений; - тензор деформации; ciklm – тензор упругих модулей. Отсюда следует, что вектор упругого смещения удовлетворяет волновому уравнению вида: . Если искать решение этого уравнения в виде плоской монохроматической волны , то ему можно придать вид: , где - тензор приведенных упругих модулей; - единичный вектор волновой нормали; c = ω/k – фазовая скорость упругой волны. Полученное уравнение является основным для всей теории упругих волн в твердых телах, и носит название уравнения Кристоффеля. Из него, в частности, следует, что в анизотропных твердых телах (кристаллах) по любому направлению могут распространяться три упругие волны, которые в общем случае не являются ни чисто продольными, ни чисто поперечными. Фазовые скорости их также различны. Изотропные твердые тела характеризуются только двумя упругими модулями – модулем Юнга E и модулем сдвига G. В таких телах две из трех упругих волн всегда являются чисто поперечными и имеют одинаковуюфазовую скорость ct; третья волна является чисто продольной и имеет свою фазовую скорость cl > ct. В данном случае исходное волновое уравнение распадается на два независимых волновых уравнения для двух поперечных волн и одной продольной волны :
; ,
где - фазовая скорость поперечной волны; - фазовая скорость продольной волны. Как и электромагнитные волны, упругие волны переносят энергию и импульс. Перенос энергии в упругой волне осуществляется за счет потока вектора Умова , аналогичного вектору Пойнтинга , и имеющему смысл плотности потока энергии. Дифференциальное уравнение закона сохраненияэнергии для упругого поля имеет аналогичный вид: , где - плотность энергии упругой волны, которая слагается из кинетической энергии колеблющихся частиц среды и потенциальной энергии упругой деформации; - компоненты вектора Умова (Умов Н.А., 1846-1915). Альтернативный подход к описанию закономерностей распространения упругих волн в кристаллах основан на представлении первичного волнового уравнения второго порядка системой дифференциальных уравнений в частных производных первого порядка от вектора смещения (Наими Е.К., Хзарджян С.М., 1978). При этом уравнения дляпоперечныхкомпонент вектора смещения оказываются полностью аналогичными уравнениям Максвелла для электромагнитного поля в вакууме, а для продольных компонент – аналогичными уравнениям плазменных колебаний. Соответствующие уравнения записываются в виде:
для поперечных компонент
для продольных компонент
Преимуществом данного подхода является то, что он открывает возможность исследования упругих волновых процессов в кристаллах на основе математического аппарата, разработанного в электродинамике сплошных сред.
Дата добавления: 2014-01-07; Просмотров: 765; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |