Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сортировки включением. Но сортировка требует еще и в среднем N2./4 перемещений, что делает ее в таком варианте значительно менее эффективной

СОРТИРОВКА ПРОСТЫМИ ВСТАВКАМИ. Этот метод - "дословная" реализация стратегии включения. Порядок алгоритма сортировки простыми вставками - O(N2), если учитывать только операции сравнения.

Но сортировка требует еще и в среднем N2./4 перемещений, что делает ее в таком варианте значительно менее эффективной, чем сортировка выборкой.

Алгоритм сортировки простыми вставками иллюстрируется программным примером 1.9.

{===== Программный пример 1.9 =====}

void SortEV(ref int[] dst, ref int[] src)

{

int j;

for (int i = 0; i < N; i++) // перебор входного массива

{

j = 0; // поиск места для src[i] в вых. массиве

while (j < i && dst[j] <= src[i]) j++;

// освобождение места для нового эл-та

for (int k = i; k > j + 1; k--) dst[k] = dst[k - 1];

dst[j] = src[i]; // запись в выходной массив

}

}

Эффективность алгоритма может быть несколько улучшена при применении не линейного, а дихотомического поиска. Однако, следует иметь в виду, что такое увеличение эффективности может быть достигнуто только на множествах значительного по количеству элементов объема. Но поскольку алгоритм требует большого числа пересылок, то при значительном объеме одной записи эффективность может определяться не количеством операций сравнения, а количеством пересылок. Алгоритм обменной сортировки простыми вставками отличается от базового алгоритма только тем, что входное и выходное множества будут разделять одну область памяти.

ПУЗЫРЬКОВАЯ СОРТИРОВКА ВСТАВКАМИ. Это модификация обменного варианта сортировки. При такой сортировке входное и выходное множества находятся в одной последовательности, причем выходное - в начальной ее части. В исходном состоянии можно считать, что первый элемент последовательности уже принадлежит упорядоченному выходному множеству, остальная часть последовательности - неупорядоченное входное. Первый элемент входного множества примыкает к концу выходного множества. На каждом шаге сортировки происходит перераспределение последовательности: выходное множество увеличивается на один элемент, а входное - уменьшается. Это происходит за счет того, что первый элемент входного множества теперь считается последним элементом выходного. Затем выполняется просмотр выходного множества от конца к началу с перестановкой соседних элементов, которые не соответствуют критерию упорядоченности.

Просмотр прекращается, когда прекращаются перестановки. Это приводит к тому, что последний элемент выходного множества "выплывает" на свое место в множестве. Поскольку при этом перестановка приводит к сдвигу нового в выходном множестве элемента на одну позицию влево, нет смысла всякий раз производить полный обмен между соседними элементами - достаточно сдвигать старый элемент вправо, а новый элемент записать в выходное множество, когда его место будет установлено. Именно так и построен программный пример пузырьковой сортировки вставками - 1.10.

{===== Программный пример 1.10 =====}

void SortPV(ref int[] mas)

{

int t, j;

for (int i = 1; i < N; i++) // перебор входного массива

{ //*** вх.множество - [i..N], вых.множество - [1..i]

t = mas[i]; // запоминается значение нового эл-та

j = i - 1; //поиск места для эл. в вых. множестве со сдвигом

// конец цикла при достижении начала или,

// если найден эл.меньший нового

j = i - 1;

while (j >= 0 && mas[j] > t)

{ // все эл-ты, большие нового, сдвигаются

mas[j + 1] = mas[j];

j--; // цикл от конца к началу выходного множества

}

mas[j + 1] = t; // новый эл-т ставится на свое место

}

}

Результаты трассировки программного примера 1.10 представлены в табл. 1.5.

 

Таблица 1.5

Шаг Содержимое массива а
исходный 48:43 90 39 9 56 40 41 75 72
  43 48:90 39 9 56 40 41 75 72
  43 48 90:39 9 56 40 41 75 72
  39 43 48 90: 9 56 40 41 75 72
  9 39 43 48 90:56 40 41 75 72
  9 39 43 48 56 90:40 41 75 72
  9 39 40 43 48 56 90:41 75 72
  9 39 40 41 43 48 56 90:75 72
  9 39 40 41 43 48 56 75 90:72
результат 9 39 40 41 43 48 56 72 75 90:

 

Хотя обменные алгоритмы стратегии включения и позволяют сократить число сравнений при наличии некоторой исходной упорядоченности входного множества, значительное число пересылок существенно снижает эффективность этих алгоритмов. Поэтому алгоритмы включения целесообразно применять к связным структурам данных, когда операция перестановки элементов структуры требует не пересылки данных в памяти, а выполняется способом коррекции указателей.

Еще одна группа включающих алгоритмов сортировки использует структуру дерева. Рассмотрение последующих алгоритмов будет полезно после ознакомления с главой 6.

СОРТИРОВКА УПОРЯДОЧЕННЫМ ДВОИЧНЫМ ДЕРЕВОМ. Алгоритм складывается из построения упорядоченного двоичного дерева и последующего его обхода. Если нет необходимости в построении всего линейного упорядоченного списка значений, то нет необходимости и в обходе дерева, в этом случае применяется поиск в упорядоченном двоичном дереве. Алгоритмы работы с упорядоченными двоичными деревьями подробно рассмотрены в главе 6. Отметим, что порядок алгоритма - O(N*log2N)), но в конкретных случаях все зависит от упорядоченности исходной последовательности, которая влияет на степень сбалансированности дерева и в конечном счете - на эффективность поиска.

ТУРНИРНАЯ СОРТИРОВКА. Этот метод сортировки получил свое название из-за сходства с кубковой системой проведения спортивных соревнований: участники соревнований разбиваются на пары, в которых разыгрывается первый тур; из победителей первого тура составляются пары для розыгрыша второго тура и т.д. Алгоритм сортировки состоит из двух этапов. На первом этапе строится дерево, аналогичное схеме розыгрыша кубка.

Например: для последовательности чисел: 16 21 8 14 26 94 30 1 такое дерево будет иметь вид пирамиды, показанной на рис. 1.4.

 

Рис.1.4. Пирамида турнирной сортировки

 

В примере 1.11 приведена программная иллюстрация алгоритма турнирной сортировки. Она нуждается в некоторых пояснениях. Построение пирамиды выполняется функцией Create_Heap. Пирамида строится от основания к вершине. Элементы, составляющие каждый уровень, связываются в линейный список, поэтому каждый узел дерева помимо обычных указателей на потомков - left и right, содержит и указатель на "брата" - next. При работе с каждым уровнем указатель содержит начальный адрес списка элементов в данном уровне. В первой фазе строится линейный список для нижнего уровня пирамиды, в элементы которого заносятся ключи из исходной последовательности. Следующий цикл while в каждой своей итерации надстраивает следующий уровень пирамиды. Условием завершения этого цикла является получение списка, состоящего из единственного элемента, то есть вершины пирамиды. Построение очередного уровня состоит в попарном переборе элементов списка, составляющего предыдущий (нижний) уровень. В новый уровень переносится наименьшее значение ключа из каждой пары.

Следующий этап состоит в выборке значений из пирамиды и формирования из них упорядоченной последовательности (процедура Heap_Sort и функция Competit). В каждой итерации цикла процедуры Heap_Sort выбирается значение из вершины пирамиды - это наименьшее из имеющихся в пирамиде значений ключа. Узел-вершина при этом освобождается, освобождаются также и все узлы, занимаемые выбранным значением на более низких уровнях пирамиды. За освободившиеся узлы устраивается (снизу вверх) состязание между их потомками.

Так, для пирамиды, исходное состояние которой было показано на рис 1.5, при выборке первых трех ключей (1, 8, 14) пирамида будет последовательно принимать вид, показанный на рис.1.6.

 

 

Рис.1.6. Пирамида после последовательных выборок

 

Процедура Heap_Sort в программном примере 1.11 получает входной параметр head - указатель на вершину пирамиды и формирует выходной параметр mas - упорядоченный массив чисел. Вся процедура Heap_Sort состоит из цикла, в каждой итерации которого значение из вершины переносится в массив a, а затем вызывается функция Competit, которая обеспечивает реорганизацию пирамиды в связи с удалением значения из вершины.

Функция Competet рекурсивная, ее параметром является указатель на вершину того поддерева, которое подлежит реорганизации. В первой фазе функции устанавливается, есть ли у узла, составляющего вершину заданного поддерева, потомок, значение данных в котором совпадает со значением данных в вершине. Если такой потомок есть, то функция Competit вызывает сама себя для реорганизации того поддерева, вершиной которого является обнаруженный потомок. После реорганизации адрес потомка в узле заменяется тем адресом, который вернул рекурсивный вызов Competit. Если после реорганизации оказывается, что у узла нет потомков (или он не имел потомков с самого начала), то узел уничтожается и функция возвращает пустой указатель. Если же у узла еще остаются потомки, то в поле данных узла заносится значение данных из того потомка, в котором это значение наименьшее, и функция возвращает прежний адрес узла.

 

Построение дерева требует N-1 сравнений, выборка - N*log2(N) сравнений. Порядок алгоритма, таким образом, O(N*log2(N)). Сложность операций над связными структурами данных, однако, значительно выше, чем над статическими структурами. Кроме того, алгоритм неэкономичен в отношении памяти: дублирование данных на разных уровнях пирамиды приводит к тому, что рабочая область памяти содержит примерно 2*N узлов.

СОРТИРОВКА ЧАСТИЧНО УПОРЯДОЧЕННЫМ ДЕРЕВОМ. В двоичном дереве, которое строится в этом методе сортировки, для каждого узла справедливо следующее утверждение: значения ключа, записанное в узле, меньше, чем ключи его потомков. Для полностью упорядоченного дерева имеются требования к соотношению между ключами потомков. Для данного дерева таких требований нет, поэтому такое дерево и называется частично упорядоченным. Кроме того, дерево должно быть абсолютно сбалансированным. Это означает не только то, что длины путей к любым двум листьям различаются не более чем на 1, но и то, что при добавлении нового элемента в дерево предпочтение всегда отдается левой ветви/подветви, пока это не нарушает сбалансированность. Более подробно деревья рассматриваются в лекции 13.

Например: последовательность чисел: 3 20 12 58 35 30 32 28 будет представлена в виде дерева, показанного на рис. 1.7.

 

Рис.1.7. Частично упорядоченное дерево

 

Представление дерева в виде пирамиды наглядно показывает, что для такого дерева можно ввести понятия "начала" и "конца". Началом, естественно, будет считаться вершина пирамиды, а концом - крайний левый элемент в самом нижнем ряду (на рис.1.7 это 58).

Для сортировки этим методом должны быть определены две операции: вставка в дерево нового элемента и выборка из дерева минимального элемента; причем выполнение любой из этих операций не должно нарушать ни сформулированной выше частичной упорядоченности дерева, ни его сбалансированности.

Алгоритм вставки состоит в следующем. Новый элемент вставляется на первое свободное место за концом дерева (на рис.1.7 это место обозначено символом "*"). Если ключ вставленного элемента меньше, чем ключ его предка, то предок и вставленный элемент меняются местами. Ключ вставленного элемента теперь сравнивается с ключом его предка на новом месте, и т.д. Сравнения заканчиваются, когда ключ нового элемента окажется больше ключа предка или когда новый элемент "выплывет" в вершину пирамиды. Пирамида, показанная на рис.1.8, построена именно последовательным включением в нее чисел из приведенного ряда. Если мы включим в нее, например, еще число 16, то пирамида примет вид, представленный на рис.1.7. (Символом "*" помечены элементы, перемещенные при этой операции.)

Процедура выборки элемента несколько сложнее. Очевидно, что минимальный элемент находится в вершине. После выборки за освободившееся место устраивается состязание между потомками, и в вершину перемещается потомок с наименьшим значением ключа. За освободившееся место перемешенного потомка состязаются его потомки и т.д., пока свободное место не опустится до листа пирамиды. Состояние дерева после выборки из него минимального числа (3) показано на рис.1.9,а.

 

Рис.1.8. Частично упорядоченное дерево, включение элемента

 

Рис.1.9. Частично упорядоченное дерево, исключение элемента

 

Упорядоченность дерева восстановлена, но нарушено условие его сбалансированности, так как свободное место находится не в конце дерева. Для восстановления сбалансированности последний элемент дерева переносится на освободившееся место, а затем "всплывает" по тому же алгоритму, который применялся при вставке. Результат такой балансировки показан на рис. 1.9,б.

Прежде чем описывать программный пример, иллюстрирующий сортировку частично упорядоченным деревом - пример 1.12, рассмотрим способ представления дерева в памяти. Это способ представления двоичных деревьев в статической памяти (в одномерном массиве), который может быть применен и в других задачах. Элементы дерева располагаются в соседних слотах памяти по уровням. Самый первый слот выделенной памяти занимает вершина. Следующие 2 слота - элементы второго уровня, следующие 4 слота - третьего и т.д.

Дерево, изображенное на рис.1.9,б, например, будет линеаризовано таким образом:

12 16 28 20 35 30 32 58

В таком представлении отпадает необходимость хранить в составе узла дерева указатели, так как адреса потомков могут быть вычислены. Для узла, представленного элементом массива с индексом i, индексы его левого и правого потомков будут 2*i и 2*i+1 соответственно. Для узла с индексом i индекс его предка будет i div 2.

Если применять сортировку частично упорядоченным деревом для упорядочения уже готовой последовательности размером N, то необходимо N раз выполнить вставку, а затем N раз - выборку. Порядок алгоритма - O(N*log2(N)), но среднее значение количества сравнений примерно в 3 раза больше, чем для турнирной сортировки. Но сортировка частично упорядоченным деревом имеет одно существенное преимущество перед всеми другими алгоритмами. Дело в том, что это самый удобный алгоритм для "сортировки on-line", когда сортируемая последовательность не зафиксирована до начала сортировки, а меняется в процессе работы и вставки чередуются с выборками. Каждое изменение (добавление/удаление элемента) сортируемой последовательности потребует здесь не более чем 2*log2(N) сравнений и перестановок, в то время как другие алгоритмы потребуют при единичном изменении переупорядочивания всей последовательности "по полной программе".

Типичная задача, которая требует такой сортировки, возникает при сортировке данных на внешней памяти (файлов). Первым этапом такой сортировки является формирование из данных файла упорядоченных последовательностей максимально возможной длины при ограниченном объёме оперативной памяти. Приведенный ниже программный пример (пример 1.13) показывает решение этой задачи.

Последовательность чисел, записанная во входном файле, поэлементно считывается, и числа по мере считывания включаются в дерево. Когда дерево оказывается заполненным, очередное считанное из файла число сравнивается с последним числом, выведенным в выходной файл. Если считанное число не меньше последнего выведенного, но меньше числа, находящегося в вершине дерева, то в выходной файл выводится считанное число. Если считанное число не меньше последнего выведенного и не меньше числа, находящегося в вершине дерева, то в выходной файл выводится число, выбираемое из дерева, а считанное число заносится в дерево. Наконец, если считанное число меньше последнего выведенного, то поэлементно выбирается и выводится все содержимое дерева, и формирование новой последовательности начинается с записи в пустое дерево считанного числа.

 

<== предыдущая лекция | следующая лекция ==>
 | 
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 338; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.039 сек.