КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Диаграмма состояний (statechart diagram)Введение
План лекции · Проектирование динамики приложений при помощи диаграмм переходов состояний, диаграмм последовательности и диаграмм взаимодействия в UML · Диаграмма состояний (statechart diagram) – автоматы, определение состояния и перехода, составное состояния и подсостояния, сложные переходы. · Диаграмма деятельности (activity diagram) – состояние действия, переходы, дорожки, объекты, рекомендации по построению диаграмм деятельности. · Диаграмма последовательности (sequence diagram) – объекты, сообщения, рекомендации по построению диаграмм последовательности. · Диаграмма кооперации (collaboration diagram) – кооперация, диаграмма кооперации уровня спецификации, объекты, связи, сообщения, рекомендации по построению диаграмм кооперации Рассмотренная выше диаграмма классов представляет собой логическую модель статического представления моделируемой системы. Речь идет о том, что на данной диаграмме изображаются только взаимосвязи структурного характера, не зависящие от времени или реакции системы на внешние события. Однако для большинства физических систем, кроме самых простых и тривиальных, статических представлений совершенно недостаточно для моделирования процессов функционирования подобных систем как в целом, так и их отдельных подсистем и элементов. Рассмотрим простой пример. Любое техническое устройство, такое как телевизор, компьютер, автомобиль, телефонный аппарат в самом общем случае может характеризоваться такими своими состояниями, как "исправен" и "неисправен". Интуитивно ясно, какой смысл вкладывается в каждое из этих понятий. Более того, использование по назначению данного устройства возможно только тогда, когда оно находится в исправном состоянии. В противном случае необходимо предпринять совершенно конкретные действия по его ремонту и восстановлению работоспособности. Однако понимание семантики понятия состояния представляет определенные трудности. Дело в том, что характеристика состояний системы не зависит (или слабо зависит) от логической структуры, зафиксированной в диаграмме классов. Поэтому при рассмотрении состояний системы приходится на время отвлечься от особенностей ее объектной структуры и мыслить совершенно другими категориями, образующими динамический контекст поведения моделируемой системы. Поэтому при построении диаграмм состояний необходимо использовать специальные понятия, которые и будут рассмотрены в данной главе. Ранее, в главах 1 и 4, было отмечено, что каждая прикладная система характеризуется не только структурой составляющих ее элементов, но и некоторым поведением или функциональностью. Для общего представления функциональности моделируемой системы предназначены диаграммы вариантов использования, которые на концептуальном уровне описывают поведение системы в целом. Сейчас наша задача заключается в том, чтобы представить поведение более детально на логическом уровне, тем самым раскрыть сущность ответа на вопрос: "В процессе какого поведения система обеспечивает необходимую функциональность?". Для моделирования поведения на логическом уровне в языке UML могут использоваться сразу несколько канонических диаграмм: состояний, деятельности, последовательности и кооперации, каждая из которых фиксирует внимание на отдельном аспекте функционирования системы. В отличие от других диаграмм диаграмма состояний описывает процесс изменения состояний только одного класса, а точнее — одного экземпляра определенного класса, т. е. моделирует все возможные изменения в состоянии конкретного объекта. При этом изменение состояния объекта может быть вызвано внешними воздействиями со стороны других объектов или извне. Именно для описания реакции объекта на подобные внешние воздействия и используются диаграммы состояний. Главное предназначение этой диаграммы — описать возможные последовательности состояний и переходов, которые в совокупности характеризуют поведение элемента модели в течение его жизненного цикла. Диаграмма состояний представляет динамическое поведение сущностей, на основе спецификации их реакции на восприятие некоторых конкретных событий. Системы, которые реагируют на внешние действия от других систем или от пользователей, иногда называют реактивными. Если такие действия инициируются в произвольные случайные моменты времени, то говорят об асинхронном поведении модели. Хотя диаграммы состояний чаще всего используются для описания поведения отдельных экземпляров классов (объектов), но они также могут быть применены для спецификации функциональности других компонентов моделей, таких как варианты использования, актеры, подсистемы, операции и методы. Диаграмма состояний по существу является графом специального вида, который представляет некоторый автомат. Понятие автомата в контексте UML обладает довольно специфической семантикой, основанной на теории автоматов. Вершинами этого графа являются состояния и некоторые другие типы элементов автомата (псевдосостояния), которые изображаются соответствующими графическими символами. Дуги графа служат для обозначения переходов из состояния в состояние. Диаграммы состояний могут быть вложены друг в друга, образуая вложенные диаграммы более детального представления отдельных элементов модели. Для понимания семантики конкретной диаграммы состояний необходимо представлять не только особенности поведения моделируемой сущности, но и знать общие сведения по теории автоматов.
Дата добавления: 2014-01-07; Просмотров: 406; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |