Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сопротивление кровотоку

 

Сопротивление потоку жидкости (гидравлическое сопротивление) зависит от размеров трубки (сосуда) и характеристик жидкости (крови):

Где W – гидравлическое сопротивление, h - вязкость жидкости, l – длина трубки, R – радиус трубки.

 

 

Общее сопротивление последовательно соединённых трубок:

R общ. = R1 + R2 + R3+ … + Rn

 

Общее сопротивление параллельно соединённых трубок:

1/R общ. = 1/R1 + 1/R2 + 1/R3+ … + 1/Rn

 

ОПСС = АДср / МОК

 

 

Подробнее Учебник, I том C.363-364.

 

 

4. Сосудистый тонус[Б19]

 

Сосудистый тонус — некоторое постоянное напряжение сосудистых стенок

Тонус от греч. Tonos – натяжение, напряжение.

А о каком напряжении идет речь? Характеристикой напряжения, испытываемою структурами сосудистой стенки могут быть две величины – тангенциальное напряжение стенки сосуда и трансмуральное давление (рис. 411251631).

 

 

Рис. 411251631. Схема соотношения трансмурального давления и тангенциального напряжения в кровеносном сосуде цилиндрической формы. Рв - внутрисосудистое давление; Рн – давление снаружи сосуда; r - внутренний радиус; h - толщина стенки; Т — тангенциальное напряжение в стенке сосуда.

 

Когда говорят о сосудистом тонусе имеют ввиду тангенциальное напряжение. Различайте понятия «нормотония», «гипертония», «гипотония» с одной стороны от «нормотензия», «гипертензия», «гипотензия» с другой.

 

 

  [10]

 

Часто используемый термин «артериальная гипертония», следует заменить на термин «артериальная гипертензия», если речь идёт о повышении системного артериального давления. При сосудистой гипертонии повышения артериального давления может и не быть, если наполнение сосудов кровью при этом недостаточное[V.G.20].

 

Если в стенке сосуда производится продольный разрез, то края этого разреза расходятся под действием тангенциального напряжения (рис. 710290715).

 

 

Рис. 710290715. Расхождение краёв продольного разреза стенки сосуда под действием тангенциального напряжения (Т).

 

Трансмуральным давлением [a] называют разность давлений между внутренней и наружной поверхностями стенки сосуда (Рt = Рв — Pн).

Поскольку сосудистая стенка эластична, изменения трансмурального давления сопровождаются соответствующими изменениями диаметра и степени растяжения сосуда.

 

В большинстве органов внешнее давление (т.е. давление на сосуды со стороны окружающих тканей) невелико, поэтому трансмуральное давление фактически равно внутрисосудистому. Однако в некоторых особых случаях внутрисосудистое давление может оставаться постоянным, а трансмуральное — претерпевать значительные изменения из-за местных колебаний экстрамурального давления (это касается в особенности вен с их легко деформируемыми стенками). В таких ситуациях просвет сосудов меняется, и это влияет на их емкость и скорость кровотока.

 

Растягивающее давление, действующее на стенки сосуда, создает в них противоположно направленное тангенциальное напряжение (Т). Это напряжение зависит не только от трансмурального давления, но также от внутреннего радиуса (rв) и толщины стенок (h). Напряжение, проинтегрированное для всей толщины стенки (Тh), можно рассчитать исходя из видоизмененногоуравнения Лапласа:

 

Тh = Pt ∙ (rв / h) (Н/м2[Б21]).

 

При данном давлении напряжение будет тем больше, чем больше радиус сосуда и меньше толщина его стенки.

2.

3. В табл. 710290720 приведены значения напряжения в стенках различных сосудов. Эти значения рассчитаны для более простых, чем реальные, условий: 1) не учтены градиенты давлений (приняты средние давления для сосудов каждого типа с различным радиусом), 2) в некоторых случаях соотношение между внутренним радиусом и толщиной стенки широко варьирует.

 

Таблица 710290720.

4. Значения трансмурального давления (Р) и тангенциального напряжения (Т) в различных сосудах

 

Сосуды rв, мкм r / h Р, кПа Т, кПа
Аорта     13,3  
Артерии 500 – 3000 3 – 7 11,0 33 – 77
Артериолы 10 – 100 1 – 5 7,0 7 – 35
Капилляры   5 – 8 3,3 17-26
Венулы 10 – 250 7 – 10 1,6 11-16
Вены 750 – 7500 7 –10 1,3 9 – 13
Полые вены   10 – 15 1,0 10 –15

 

 

5. Из таблицы видно, что по мере удаления от аорты и крупных артерий к артериолам и более дистальным сосудам напряжение в стенке значительно снижается. Благодаря этой закономерности низкому напряжению в стенке сосудов с малым радиусом капилляры, состоящие всего из одного слоя клеток, не разрываются под действием растягивающей силы, обусловленной давлением крови.

6. Мелкие сосуды обладают еще одной особенностью: когда в результате сокращения гладких мышц их радиус уменьшается, напряжение в их стенке, будучи небольшим уже в состоянии покоя, еще сильнее снижается. Это связано не только с уменьшением радиуса сосуда, но и с одновременным утолщением ею стенки. В связи с этим неудивительно, что при любых физиологических значениях давления сокращение гладкой мускулатуры артериол легко приводит к уменьшению их диаметра.

 

Тонус сосудов определяют следующие элементы сосудистой стенки:

1) эластические волокна;

2) коллагеновые волокна;

3) гладкомышечные волокна.

 

Количество этих волокон в разных сосудах различно.

 

Эластические волокна, особенно волокна внутренней оболочки (интимы), образуют относительно густую сеть. Они легко могут быть растянуты в несколько раз. Эти волокна создаютэластическое напряжение, противодействующее кровяному давлению, растягивающему сосуд. На создание такого напряжения не расходуется энергия биохимических процессов.

Коллагеновые волокна средней и наружной оболочек образуют сеть, оказывающую растяжению сосуда гораздо большее сопротивление, чем эластические волокна. Коллагеновые волокна относительно свободно располагаются в стенке сосуда и иногда образуют складки. В связи с этим они противодействуют давлению только тогда, когда сосуд растянут до определенной степени.

Веретенообразные гладкомышечные клетки (диаметром около 4,7 мкм, длиной около 20 мкм) соединены друг с другом и с эластическими и коллагеновыми волокнами. Главная функция гладкомышечных клеток и состоит в создании активного напряжения сосудистой стенки (сосудистого тонуса) и в изменении величины просвета сосудов в соответствии с физиологическими потребностями. Гладкие мышцы кровеносных сосудов иннервируются волокнами автономной вегетативной нервной системы.

 

Соотношение между давлением и скоростью кровотока в сосудах разного типа (Пассивное растяжение и ауторегуляция сосудистого тонуса)

 

7. При исследовании зависимости между кровотоком и обуславливающим его давлением выяснилось, что характер её существенно зависит от типа сосуда и заметно отличается от характера зависимости для жёсткой трубки.

8. При повышении давления в сосуде он либо пассивно растягивается (легочный сосуд), либо сокращается в результате ауторегуляторных реакций (почечный сосуд). Следовательно, в сосудах типа легочных повышение давления приводит к большему увеличению кровотока, чем в жестких трубках, а в сосудах типа почечных к меньшему. В жестких же трубках (прямые) кровоток прямо пропорционален давлению, причем при увеличении радиуса трубки от 1 до 1,2 и 2 коэффициент пропорциональности возрастает соответственно в 2 и 16 раз.

 

 

Кривые давление кровоток часто пересекают горизонтальную ось не в области нуля, а в точке, соответствующей некой положительной величине так называемому критическому давлению закрытия.

Критическое давление закрытия – это [Б22] давление ниже которого кровоток в сосудах прекращается.

 

При перфузии сосуда кровью критическое давление закрытия составляет около 20 мм рт. cm., а при высоком сосудистом тонусе оно может достигать 60 мм рт.ст. В отсутствие тонуса критическое давление закрытия может снижаться до 1 мм рт. ст.

 

В скелетной мышце в состоянии покоя функционирует только сотая часть капилляров, остальные капилляры находятся в спавшемся состоянии. Считается, что спадение сосуда при критическом давлении характерно для артериол. Это связано с тем, что по мере снижения их радиуса, наступающего в результате уменьшения давления, растягивающая сила убывает быстрее, чем она уменьшалась бы только в соответствии со снижением давления.

Кроме того, к остановке кровотока может приводить увеличение вязкости крови, наблюдающееся при низких скоростях кровотока.

В тех участках сосудистой системы, где наружное давление достаточно велико по сравнению с внутрисосудистым, кровоток может прекращаться даже при наличии артериовенозного градиента давления. Это может быть обусловлено либо спадением сосудов (легочные сосуды, вены), либо их сдавлением (коронарные сосуды при систоле). В условиях значительного критического давления при снижении чрезмерно высокого кровяного давления до нормы кровообращение в той или иной сосудистой области может прекратиться. Таким образом, для определения эффективной артериовенозной разницы давлений в сосудистой системе из полученной при измерении величины следует вычитать критическое давление закрытия

 

Релаксация напряжения, обратная релаксация напряжения[Б23]

 

Если внезапно увеличить объем изолированного участка сосуда, то давление в нем сначала резко повысится, а затем будет постепенно снижаться при том же объеме. Через несколько минут давление может стать лишь немногим больше, чем до увеличения объема (рис.).

 

9. Рис.. Кривая изменения давления при ступенчатом изменении объема в изолированном участке вены.

 

Это медленное снижение давления связано с тем, что после первоначального растяжения эластических волокон развивается приспособление [Б24] тонуса гладких мышц к увеличенному растяжению. Этот процесс называется релаксацией напряжения.

 

Возможно, такоевязкоэластичное поведение сосудистой стенки обусловлено перестройкой актомиозиновых мостиков в растянутых мышечных волокнах, в результате которой миофиламенты медленно скользят относительно друг друга, что и приводит к уменьшению напряжения.

При внезапном снижении объема в сосуде происходят обратные процессы (рис.). Напряжение в гладкомышечных волокнах сначала резко снижается, а в последующие минуты постепенно повышается; вместе с напряжением возрастает и внутрисосудистое давление. Это так называемая обратная релаксация напряжения.

 

Рис.. Кривая изменения давления при ступенчатом изменении объема в изолированном участке вены.

 

Прямую и обратную релаксацию напряжения можно наблюдать как в артериях, так и в венах, но гораздо более выражены эти явления в венах. Благодаря этому, а также вследствие большой емкости вены могут задерживать и выбрасывать значительный объем крови без длительных изменений внутрисосудистого давления. Возможно, релаксация напряжения и обратная релаксация служат важными механизмами поддержания давления наполнения кровеносной системы [V.G.25] в соответствии с различными физиологическими потребностями организма [V.G.26].

 

<== предыдущая лекция | следующая лекция ==>
Основные законы гемодинамики | Прямые методы
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 469; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.