Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Правило Рунге-Ромберга

Методы 4-го порядка точности. Результаты расчетов примера 5.3

tg(x) – аналитич. Метод Метод Метод

решение Рунге-Кутты Адамса-Башфорта А-Б-М

 

 

 
 

 


С помощью правила Рунге-Ромберга (правила двойного пересчета, аналогичного правилу Рунге для интегралов) можно подобрать значение h, обеспечивающего достижение заданной точности e. Положив уh – значение искомой функции в текущей точке, вычисленное с шагом h, а yh/2 – значение, полученное при двукратном использовании тех же формул с шагом h/2, имеем следующее правило: при заданной точности e решение yh/2 следует признать удовлетворительным, если выполняется условие.

, (5.17)

где значение m соответствует порядку точности метода. Например, для явного метода Эйлера m = 1, для модифицированного и неявного методов Эйлера m = 2 и m = 4 для методов Рунге-Кутты и Адамса. Контрольные значения yh и yh/2 следует выбирать при таком х, для которого значение левой части (5.17) максимально.

 

<== предыдущая лекция | следующая лекция ==>
 | Системы дифференциальных уравнений. Как правило, возникающие в приложениях проблемы, приводят к необходимости решать задачу Коши не для одного дифференциального уравнения
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 931; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.