КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Введение. Синтез нейронных нечетких сетей
Синтез нейронных нечетких сетей Лекция 28
Различные типы интеллектуальных систем имеет свои особенности, например, по возможностям обучения, обобщения и выработки результатов, что делает их наиболее пригодными для решения одних классов задач и менее пригодными для других. Например, нейронные сети хороши для задач идентификации объектов, но весьма неудобны для объяснения, как они такую идентификацию осуществляют. Они могут автоматически приобретать знания, но процесс их обучения зачастую происходит достаточно медленно, а анализ обученной сети весьма сложен (обученная сеть представляет обычно черный ящик для пользователя). При этом какую-либо априорную информацию (знания эксперта) для ускорения процесса ее обучения в нейронную сеть ввести невозможно. Системы с нечеткой логикой, напротив, хороши для объяснения получаемых с их помощью выводов, но они не могут автоматически приобретать знания для использования их в механизмах вывода. Необходимость разбиения универсальных множеств (универсумов) на отдельные области, как правило, ограничивает количество входных переменных в таких системах небольшими значениями. Вообще говоря, теоретически, системы с нечеткой логикой и искусственные нейронные сети подобны друг другу, однако, в соответствии с изложенным выше, на практике у них имеются свои собственные достоинства и недостатки. Данное соображение легло в основу создания аппарата нечетких нейронных сетей, в которых выводы делаются на основе аппарата нечеткой логики, но соответствующие функции принадлежности подстраиваются с использованием алгоритмов обучения нейронных сетей, например, алгоритма обратного распространения ошибки. Такие системы не только используют априорную информацию, но могут приобретать новые знания, являясь логически прозрачными.
Дата добавления: 2014-01-07; Просмотров: 338; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |