КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основные свойства тяжелого бетона
Прочность, марка и класс бетона Тяжелый бетон — основной конструкционный строительный материал, поэтому оценке его прочностных свойств уделяется большое внимание. Прочностные характеристики бетона определяются строго в соответствии с требованиями стандартов. Используется несколько показателей, характеризующих прочность бетона. Неоднородность бетона как материала учитывается в основной прочностной характеристике — классе бетона. Прочность. Как и у всех каменных материалов, предел прочности бетона при сжатии значительно (в 10... 15 раз) выше, чем при растяжении и изгибе. Поэтому в строительных конструкциях бетон, как правило, работает на сжатие. Когда говорят о прочности бетона, подразумевают его прочность на сжатие. Прочность бетона принято оценивать по среднему арифметическому значению результатов испытания образцов данного бетона через 28 суток нормального твердения. Для этого используют образцы - кубы размером 150 х 150 х 150 мм, изготовленные из рабочей бетонной смеси и твердевшие при (20 ± 2)°С на воздухе при относительной влажности 95% (или в иных условиях, обеспечи-вающих сохранение влаги в бетоне). Методы определения прочности бетона регламентированы стандартом. Марка бетона. По среднему арифметическому значению прочности бетона устанавливают его марку — округленное значение прочности (причем округление идет всегда в нижнюю сторону). Для тяжелого бетона установлены следующие марки по прочности на сжатие: 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700 и 800 кгс/см2. При обозначении марки используют индекс «М»; так, например, марка бетона М35О означает, что его средняя прочность не менее 35 МПа (но не более 40). Отличительная особенность бетона — значительная неоднородность его свойств. Это объясняется изменчивостью в качестве сырья (песка, крупного заполнителя и даже цемента), нарушением режима приготовления бетонной смеси, ее транспортировки, укладки (степени уплотнения) и условии твердения. Все это приводит к разбросу прочности бетона одного и того же состава. Чем выше культура производства (лучше качество подготовки материалов, приготовления и укладки бетона и т. п.), тем меньше будут возможные колебания прочности бетона. Для строителя важно получить бетон не только с заданной средней прочностью, но и с минимальными отклонениями (особенно в низшую сторону) от этой прочности. Показателем, который учитывает возможные колебания качества бетона, является класс бетона. Класс бетона — это численная характеристика прочности, принимаемая с гарантированной обеспеченностью (обычно 0,95). Это значит, что установленное классом свойство, например прочность бетона, достигается не менее чем в 95 случаях из 100. Понятие «класс бетона» позволяет назначать прочность бетона с учетом ее фактической или возможной вариации. Чем меньше изменчивость прочности, тем выше класс бетона при одной и той же средней прочности. Соотношение между классами и марками бетона неоднозначно и зависит от однородности бетона, оцениваемой с помощью коэффициента вариации. Чем меньше коэффициент вариации, тем однороднее бетон. Помимо прочности к основным свойствам принять относить деформативность, морозостойкость и теплофизические свойства, которые во многом зависят от пористости и способности бетона поглощать воду в период эксплуатации. К деформативным свойствам, как мы уже знаем, относят модуль упругости, модуль деформаций, модуль Пуассона и пр. Начальный модуль упругости зависит от пористости и прочности и составляет для тяжелых бетонов (2,2….3,5) . 104 МПа. У ячеистых бетонов – 1. 104. Важными для бетонов являются деформации бетона, возникающие при усадке бетона и его ползучести Ползучесть — склонность бетона к росту пластических деформаций при длительном действии статической нагрузки. Ползучесть бетона также связана с пластическими свойствами цементного геля и микро-трещинообразованием. Она носит затухающий во времени характер. Абсолютные значения ползучести зависят от многих факторов. Особенно активно ползучесть развивается, если бетон нагружается в раннем возрасте. Ползучесть можно оценивать двояко: как положительный процесс, помогающий снижать напряжения, возникающие от термических и усадочных процессов, и как отрицательное явление, например, снижающее эффект от предварительного напряжения арматуры. Усадка — процесс сокращения размеров бетонных элементов при их нахождении в воздушно-сухих условиях. Основная причина усадки — сжатие гелевой составляющей при потере воды. Усадка бетона тем выше, чем больше объем цементного теста в бетоне. В среднем усадка тяжелого бетона составляет 0,3...0,4 мм/м. Вследствие усадки бетона в бетонных и железобетонных конструкциях могут возникнуть большие усадочные напряжения, поэтому элементы большой протяженности разрезают усадочными швами во избежание появления трещин. При усадке бетона 0,3 мм/м в конструкции длиной 30 м общая усадка составит 10 мм. Усадочные трещины в бетоне на контакте с заполнителем и в самом цементном камне могут снизить морозостойкость и послужить очагами коррозии бетона. Пористость. Как это ни покажется странным, такой плотный материал, как бетон имеет заметную пористость. Причина ее возникновения,как, это уже не раз говорилось, кроется в избыточном количестве воды затворения. Бетонная смесь после правильной укладки представляет собой плотное тело. При твердении часть воды химически связывается минералами цементного клинкера (для портландцемента около 0,2 от массы цемента), а оставшаяся часть постепенно испаряется, оставляя после себя поры. В этом случае пористость бетона можно определить по формуле П = [(В - ω•Ц)/1000]100, где В и Ц - расходы воды и цемента на 1м3 (1000дм3); ω — количество химически связанной воды в долях от массы цемента. Пример. В возрасте 28 суток цемент связывает 17 % воды от своей массы; расход воды в этом бетоне - 180 кг, а цемента — 320 кг. Тогда пористость этого бетона будет: П = [(180 - 0,17•320)/1000]100 = 12,6 %. Это общая пористость, включающая микропоры геля и капиллярные поры (объем вовлеченного воздуха мы не рассматриваем). С точки зрения влияния на проницаемость и морозостойкость бетона важно количество капиллярных пор. Относительный объем таких пор можно вычислить по формуле, %: Пк = [(В-2ωЦ)/1000]100. Для нашего случая количество капиллярных пор будет — 7,1 %. Водопоглощение и проницаемость. Благодаря капиллярно-пористому строению бетон может поглощать влагу как при контакте с ней, так и непосредственно из воздуха. Гигроскопическое влагопоглощение у тяжелого бетона незначительно, но у легких бетонов (а в особенности у ячеистых) может достигать соответственно 7...8 и 20...25 %. Водопоглощение характеризует способность бетона впитывать влагу в капельно-жидком состоянии; оно зависит, главным образом, от характера пор. Водопоглощение, как мы уже знаем, тем больше, чем больше в бетоне капиллярных сообщающихся между собой пор. Максимальное водопоглощение тяжелых бетонов на плотных заполнителях достигает 4...8 % по массе (10...20 % по объему). У легких и ячеистых бетонов этот показатель значительно выше. Большое водопоглощение отрицательно сказывается на морозостойкости бетона и его теплозащитных свойствах. Для уменьшения водопоглощения прибегают к гцдрофобизации бетона, а также к устройству паро- и гидроизоляции конструкций. Водопроницаемость бетона определяется в основном проницаемостью цементного камня и контактной зоны «цементный камень — заполнитель»; кроме того, путями фильтрации жидкости через бетон могут быть микротрещины в цементном камне и дефекты сцепления арматуры с бетоном. Высокая водопроницаемость бетона может привести его к быстрому разрушению из-за коррозии цементного камня. Для снижения водопроницаемости необходимо применять заполнители надлежащего качества (с чистой поверхностью), а также использовать специальные уплотняющие добавки (жидкое стекло, хлорное железо) или расширяющиеся цементы. Последние используются для устройства бетонной гидроизоляции. По водонепроницаемости бетон делят на марки W0,2; W0,4; W0,6; W0,8 и Wl,2. Марка обозначает давление воды (МПА), при котором образец-цилиндр высотой 15 см не пропускает воду при стандартных испытаниях. Морозостойкость — главный показатель, определяющий долговечность бетонных конструкций в нашем климате. Морозостойкость бетона оценивается путем попеременного замораживания при минус (18 ± 2)° С и оттаивания в воде при (18 ± 2)° С предварительно насыщенных водой образцов испытуемого бетона. Продолжительность одного цикла - 5... 10 ч в зависимости от размера образцов. За марку по морозостойкости принимают наибольшее число циклов «замораживания - оттаивания», которое образцы выдерживают без снижения прочности на сжатие более 5% по сравнению с прочностью контрольных образцов в начале испытаний. Установлены следующие марки бетона по морозостойкости: F25; F35; F50; F75; F100...F1000. Стандартом разрешается применять ускоренные методы испытаний в растворе соли или глубоким замораживанием до минус (50 ± 5)° С. Мы уже знаем, что причиной разрушения бетона в рассматриваемых условиях является капиллярная пористость. Вода по капиллярам попадает внутрь бетона и, замерзая там, постепенно разрушает его структуру. Установлена зависимость марки по морозостойкости бетона от величины капиллярной пористости. Так, согласно этой зависимости бетон, пористость которого мы рассчитывали выше, должен иметь морозостойкость F150...F200. Для получения бетонов высокой морозостойкости необходимо добиваться минимальной капиллярной пористости (не выше 6,5...6 %). Это возможно путем снижения содержания воды в бетонной смеси, что, в свою очередь, возможно путем использования: • жестких бетонных смесей, интенсивно-уплотняемых при укладке; • пластифицирующих добавок, повышающих удобоукладываемость бетон-ных смесей без добавления воды. Есть еще один путь повышения морозостойкости бетона - гидрофобизация (объемная или поверхностная); в этом случае снижается водопоглощение бетона и соответственно повышается его морозостойкость. Теплофизические свойства. Из них важнейшими являются теплопроводность, теплоемкость и температурные деформации. Теплопроводность тяжелого бетона даже в воздушно-сухом состоянии велика — около 1,2... 1,5 Вт/(м • К), т. е. в 1,5...2 раза выше, чем у кирпича. Поэтому использовать тяжелый бетон в ограждающих конструкциях можно только совместно с эффективной теплоизоляцией. Легкие бетоны, в особенности ячеистые, имеют невысокую теплопроводность 0,1...0,5 Вт/(м • К), и их применение в ограждающих конструкциях предпочтительнее. Теплоемкость тяжелого бетона, как и других каменных материалов, находится в пределах 0,75...0,92Дж/(кг • К); в среднем — 0,84 Дж/(кг • К ). Температурные деформации. Температурный коэффициент линейного расширения тяжелого бетона (10...12)•10-6К-1. Это значит, что при увеличении температуры бетона на 50°С расширение составит примерно 0,5 мм/м. Поэтому во избежание растрескивания сооружения большой протяженности разрезают температурными швами. Большие колебания температуры могут вызвать внутреннее растрескивание бетона из-за различного теплового расширения крупного заполнителя и цементного камня.
Дата добавления: 2014-01-07; Просмотров: 568; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |