КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Отображения
Говорят, что задано отображение одного множества Х (≠ Ø) в другое множество Y, если каждому элементу (точке) Для обозначения отображения используются также записи:
(читается одинаково: отображение «эф» множества «икс» во мно-жество «игрек»), или, подробнее:
(читается: отображение f множества Х во множество Y, переводя-щее точку В случае, когда Y – числовое множество, отображение Иногда, множество Х называют областью определения, а Y множеством значений функции Это словоупотребление нельзя признать корректным. Во-первых, термин «область» не является вакантным; он употребляется в курсе высшей математики совсем в другом смысле в интегральном исчислении Во-вторых, множество Y правильнее называть именно множеством изменения, а не множеством значений отображения (функции) т.к. множество значений – это образ f(Х) множества Х при отображении Приведём некоторые примеры. 1. Х – множество студентов в аудитории, Y – множество стуль-ев в этой же аудитории. Отображение (правило) f заключается в следующем: каждому студенту (точке)
2. Х – множество студентов в аудитории. Y=R – множество действительных чисел. Каждое из следующих словосочетаний определяет некоторую функцию: «рост студента», «вес студента», «размер обуви студента» и т.д. Отображение 1) взаимно однозначным «в» (или инъективным), если образы любых двух различных точек различны; 2) отображением «на» (или сюръективным), если для любого 3) взаимно однозначным (или биективным), если оно обладает первыми двумя свойствами одновременно. Эти свойства отображений можно проиллюстрировать с по-мощью только что приведённых примеров. Так отображение при-мера 1 является – по смыслу инъективным (разные студенты сидят на разных стульях); оно будет сюръективным, если нет свободных стульев; в этом случае оно будет и взаимно однозначным (биек-тивным). В примере 2 отображение «рост студента», например, будет инъективным, если в аудитории нет студентов одинакового роста. В противном случае, оно не является инъективным. Эта же функция «рост студента» не может быть сюрьективной, ибо – в противном случае – в аудитории были бы студенты
Дата добавления: 2014-01-07; Просмотров: 278; Нарушение авторских прав?; Мы поможем в написании вашей работы! |