Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Архитектура машин баз данных

В 1986 г. М.Стоунбрейкер [8], предложил разбить архитектуры параллельных машин баз данных на три класса: архитектуры с разделяемой памятью и дисками, архитектуры с разделяемыми дисками и архитектуры без совместного использования ресурсов (рис.18.1).

Рис.18.1 Три классические архитектуры: SE-архитектура с разделяемой памятью и дисками, SD-архитектура с разделяемыми дисками, SN-архитектура без совместного использования ресурсов. В SE-системах все процессоры P с помощью общей шины подключаются к разделяемой памяти M и дискам D. Процессоры передают друг другу данные через общую память. В SD-системах каждый процессор имеет свою собственную память, однако диски по-прежнему разделяются всеми процессорами. Для связи процессоров друг с другом используется высокоскоростная соединительная сеть N. В SN-системах каждый процессор имеет собственную память и собственный диск. Обмен данными между процессорами, как и в предыдущем случае, происходит через высокоскоростную соединительную сеть.

 

В системах с разделяемой памятью и дисками все процессоры при помощи общей шины соединяются с разделяемой памятью и дисками. Обозначим такую архитектуру как SE (Shared-Everything). В SE-системах межпроцессорные коммуникации могут быть реализованы очень эффективно через разделяемую память. Поскольку здесь каждому процессору доступны вся память и любой диск, проблема балансировки загрузки процессоров не вызывает принципиальных трудностей (простаивающий процессор можно легко переключить с одного диска на другой). В силу этого SE-системы демонстрируют для небольших конфигураций (не превышающих 20 процессоров) более высокую производительность по сравнению с остальными архитектурами.

Однако SE-архитектура имеет ряд недостатков, самые неприятные из которых - ограниченная масштабируемость и низкая аппаратная отказоустойчивость. При большом количестве процессоров здесь начинаются конфликты доступа к разделяемой памяти, что может привести к серьезной деградации общей производительности системы (поэтому масштабируемость реальных SE-систем ограничивается 20-30 процессорами). Не могут обеспечить такие системы и высокую готовность данных при отказах аппаратуры. Выход из строя практически любой аппаратной компоненты фатален для всей системы. Действительно, отказ модуля памяти, шины доступа к памяти или шины ввода-вывода выводит из строя систему в целом. Что касается дисков, то обеспечение высокой готовности данных требует дублирования одних и тех же данных на разных дисках. Однако поддержание идентичности всех копий может существенным образом снизить общую производительность SE-системы в силу ограниченной пропускной способности шины ввода-вывода. Все это исключает использование SE-архитектуры в чистом виде для систем с высокими требованиями к готовности данных.

В системах с разделяемыми дисками каждый процессор имеет свою собственную память. Процессоры соединяются друг с другом и с дисковыми подсистемами высокоскоростной соединительной сетью. При этом любой процессор имеет доступ к любому диску. Обозначим такую архитектуру как SD (Shared-Disk). SD-архитектура по сравнению с SE-архитектурой демонстрирует лучшую масштабируемость и более высокую степень отказоустойчивости. Однако при реализации SD-систем возникает ряд серьезных технических проблем, которые не имеют эффективного решения. По мнению большинства специалистов, сегодня нет весомых причин для поддержки SD-архитектуры в чистом виде.

В системах без совместного использования ресурсов каждый процессор имеет собственную память и собственный диск. Процессоры соединяются друг с другом при помощи высокоскоростной соединительной сети. Обозначим такую архитектуру как SN (Shared-Nothing). SN-архитектура имеет наилучшие показатели по масштабируемости и отказоустойчивости. Но ничто не дается даром: основным ее недостатком становится сложность с обеспечением сбалансированной загрузки процессоров. Действительно, в SN-системе невозможно непосредственно переключить простаивающий процессор на обработку данных, хранящихся на “чужом” диске. Чтобы разгрузить некоторый процессорный узел, нам необходимо часть “необработанных” данных переместить по соединительной сети на другой, свободный узел. На практике это приводит к существенному падению общей эффективности системы из-за высокой стоимости пересылки больших объемов данных. Поэтому перекосы в распределении данных по процессорным узлам могут вызвать полную деградацию общей производительности SN-системы.

Иерархические архитектуры

Для преодоления недостатков, присущих SE- и SN-архитектурам, А.Бхайд в 1988 г. предложил рассматривать иерархические (гибридные) архитектуры [9], в которых SE-кластеры объединяются в единую SN-систему, как это показано на рис.18.2. SE-кластер представляет собой фактически самостоятельный мультипроцессор с разделяемой памятью и дисками. Между собой SE-кластеры соединяются с помощью высокоскоростной соединительной сети N. Обозначим такую архитектуру как CE (Clustered-Everything). Она обладает хорошей масштабируемостью, подобно SN-архитектуре, и позволяет достигать приемлемого баланса загрузки, подобно SE-архитектуре.

Рис. 18.2 CE-архитектура. Эта система объединяет несколько SE-кластеров с помощью высокоскоростной соединительной сети. Каждый отдельный кластер фактически представляет собой самостоятельный мультипроцессор с SE-архитектурой.

 

Основные недостатки CE-архитектуры кроются в потенциальных трудностях с обеспечением готовности данных при отказах аппаратуры на уровне SE-кластера. Для предотвращения потери данных из-за отказов необходимо дублировать одни и те же данные на разных SE-кластерах. Однако поддержка идентичности различных копий одних и тех же данных требует пересылки по соединительной сети значительных объемов информации. А это может существенным образом снизить общую производительность системы в режиме нормального функционирования и привести к тому, что SE-кластеры станут работать с производительностью, как у однопроцессорных конфигураций.

Чтобы избавиться от указанных недостатков, мы предложили [10] альтернативную трехуровневую иерархическую архитектуру (рис.18.3), в основе которой лежит понятие SD2-кластера. Такой кластер состоит из несимметричных двухпроцессорных модулей PM с разделяемой памятью и набора дисков, объединенных по схеме SD. Обозначим данную архитектуру как CD2 (Clustered-Disk with 2-processor modules).


Рис. 18.3 CD2-архитектура. Система строится как набор SD2-кластеров, объединенных высокоскоростной соединительной сетью в стиле “без совместного использования ресурсов”. Каждый кластер – это система с разделяемыми дисками и двухпроцессорными модулями.

 

Структура процессорного модуля изображена на рис.18.4. Процессорный модуль имеет архитектуру с разделяемой памятью и включает в себя вычислительный и коммуникационный процессоры. Их взаимодействие осуществляется через общую оперативную память (RAM). Кроме этого, коммуникационный процессор имеет собственную память; он оснащен высокоскоростными внешними каналами (линками) для соединения с другими процессорными модулями. Его присутствие позволяет в значительной мере освободить вычислительный процессор от нагрузки, связанной с организацией передачи сообщений между процессорными узлами. Подобные процессорные модули выпускаются отечественной промышленностью для комплектования многопроцессорных вычислительных систем МВС-100/1000 [11].

Рис. 18.4 Несимметричный двухпроцессорный модуль с разделяемой памятью. Модуль оснащен двумя процессорами, взаимодействующими через разделяемую память (RAM). Коммуникационный процессор имеет приватную память и оснащен высокоскоростными каналами (линками) для связи с другими модулями.

 

Такую CD2-архитектуру мы использовали при реализации прототипа параллельной системы управления данными “Омега” для отечественных многопроцессорных комплексов МВС-100/1000. Как показали эксперименты, CD2-система способна достичь общей производительности, сравнимой с производительностью CE-системы, даже при наличии сильных перекосов в распределении данных по дискам. В то же время CD2-архитектура позволяет обеспечить более высокую готовность данных, чем CE-архитектура.

 

<== предыдущая лекция | следующая лекция ==>
Машины баз данных | Объектно-ориентированная архитектура
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 979; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.