Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Источник излучения

 

Требования:

- высокая эффективность преобразования энергии возбуждения в энергию оптического излучения;

- узкая полоса излучения;

- направленность излучения;

- быстродействие, т.е. быстрое возникновение и гашение потока;

- высокая технологичность;

- низкая стоимость;

- совместимость с микросхемами;

- устойчивость к жестким механическим, температурным, радиационным воздействиям;

- долговечность;

- надежность;

- миниатюрность;

- когерентность генерируемого излучения.

Когерентность – это согласованность между фазами колебаний в различных точках пространства в один и тот же момент времени – пространственная, а в различные моменты времени – временная.

Излучатели: лампы накаливания – физический эффект свечения нагретого тела – спектр излучения инфракрасный.

Газоразрядные источники дугового, тлеющего и импульсного разряда – потребляют большую мощность при относительно высоких напряжениях, имеют большие размеры, плохо поддаются минютиризации, обладают невысокой стабильностью. Их быстродействие достигает 103-104 Гц.

Наибольшее распространение получили светодиоды с красным, зеленым и желтым цветом свечения.

Их достоинства: высокий КПД; низкие токи и напряжения питания, малые размеры, относительно высокая частота переключений.

Основные недостатки – зависимость их параметров от температуры и продолжительность эксплуатации.

Лазеры – источники когерентных монохроматических излучений, позволяют получить чрезвычайно интенсивные остронаправленные пучки света. Различают твердотельные, газовые, полупроводниковые.

Однако большие размеры источников питания и излучательных трубок газовых лазеров ограничивает их применение.

У полупроводниковых лазеров высокий КПД, проста модуляция оптического излучения.

Приемники излучения. Преобразуют энергию излучения в электрический и оптический сигналы. Действуют по принципу фотоэффекта. Это фоторезисторы, фотодиоды, фототиристоры, фототранзисторы.

Сопротивление фоторезисторов изменяется под действием светового излучения, они обладают высоким быстродействием, чувствительностью. Основной недостаток – низкие рабочие частоты (103-105 Гц), высокая температурная нестабильность, влияние влажности.

Фотодиоды – аналог обычного диода. Отличие состоит в том, что его p-n – переход одной стороной обращен к стеклянному окну, через которое поступает свет и защищен с другой стороны. Может работать в двух режимах: фотодиодным (фотопреобразовательным) и вентильном (фотогенераторном). Их недостаток – существенная зависимость параметров от температуры. Бывают германиевые и кремневые.

Фототранзисторы – комбинация фотодиода и транзистора. Это позволяет одновременно с преобразованием световой энергии в электрическую осуществить усиление фототока. Два типа p-n-р и n-р-n.

На вход фототранзисторов можно подавать оптический и электрический сигналы. Характеристики фототранзисторов аналогичных характеристикам обычных транзисторов. Их темповой ток значительно больше, чем у фотодиодов, но и интегральная чувствительность выше.

Основной недостаток – значительно меньшая граничная частота по сравнению с фотодиодами. Для них характерны высокий уровень шума и сильная температурная зависимость темпового тока.

В последнее время стали часто использовать специфические оптоэлектронные полупроводниковые приборы – оптроны, объединяющие в одном корпусе источник излучения и фотоприемник, связанные между собой оптически, электрически или обеими связями одновременно.

В зависимости от типа и схемы включения оптроны обеспечивают гальваническую развязку входных и выходных цепей, коммутацию цепей с частотой до 107 Гц могут работать в ключевом и налоговом режимах. Темповое сопротивление может достигать 1010 Ом, а в освещенном состоянии снижаться до сотен Ом.

Многие физические величины, преобразованные в линейное или угловое перемещение, можно перевести в электрический сигнал с помощью фотоэлектрических преобразователей.

Наиболее просто можно получить изменение светового потока Ф, а следовательно, и фототока, изменяя расстояние от источника излучателя до фотоприемника.

Использование фотоэлектрических преобразователей позволяет получить информацию о контролируемом параметре в виде параллельного цифрового кода – кодирующие измерительные преобразователи. С их помощью можно измерять линейное или угловое перемещение, вращающий момент, частоту вращения, предварительно преобразованные в перемещение.

Принцип их действия заключается в том, что для углового измерения перемещения используют кодирующий диск, устанавливаемый на оси подвижной части первичного преобразователя. При линейном перемещении используют кодирующую линейку.

Если диск (линейка) изготовлены из непрозрачного металла, то в нем в определенном порядке вырезают отверстия. Число рядов отверстий соответствует разрядности кода, его выбирают исходя из требуемой точности измерений.

Если используют прозрачный материал, то на нем формируют прозрачные и непрозрачные участки. Напротив каждого из рядов отверстий диска устанавливают с одной стороны источник излучения, с другой фотоприемник. Каждая пара (излучатель – фотодиод) выдает информацию о состоянии соответствующего разряда цифрового кода. Обычно применяют двоичный код.

 

<== предыдущая лекция | следующая лекция ==>
Оптикоэлектронные преобразователи | 
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 263; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.