Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Связь между моделями Мили и Мура

Рассмотрим некоторый автомат Мили, заданный таблицами переходов и выходов. Таблица переходов а) и выходов б) автомата Мили

 

Подадим на вход автомата, установленного в состояние а1, входное слово x=z1 z2 z2 z1 z2 z2. Так как d(а1, z1) = a2, l(a1, z1) = W2, то под воздействием входного сигнала z1 автомат перейдет в состояние а2 и выдаст на переходе выходной сигнал W2. Затем, находясь в состоянии а2 под воздействием сигнала Z2 перейдет в состояние а1=d(а2, z2) и выдаст сигнал W1=l(a2, z2) и т.д. В табл. 13 приведена последовательность состояний, которые автомат проходит, воспринимая входное слово x, и выходные сигналы, вырабатываемые на этих переходах.

Назовем выходное слово w = l (a1, x) реакцией автомата Мили в состоянии а1 на входное слово x.

В нашем случае w = w2 w1 w2 w2 w1 w2

Как видно, из приведенного примера, в ответ на входное слово длины k автомат Мили выдаст последовательность состояний длины k +1 и выходное слово длины k.

В общем виде поведение автомата Мили, установленного в состояние am, можно описать следующим образом (табл. 14).


 

Аналогично можно описать поведение автомата Мура, находящегося в состоянии a1, при приходе входного слова

x = Zi1, Zi2,..., Zik,учитывая, что W(t) = l(a(t)):

 

 
 
Входное слово Zi1 Zi2 Zi3 Z
Последовательность cостояний am ai2 = d (am, Zi1) ai3 = d (ai2, Zi2) ai4 = d(ai3, Zi3)
Выходное слово wi1 = l (am, Zi1) wi2 = l (ai2, Zi2) wi3 = l (ai3, Zi3) wi4 = l (ai4)

 

 

 


Очевидно, что для автомата Мура выходной сигнал Wi1= l(am) в момент времени i1 не зависит от входного сигнала Zi1 и определяется только состоянием am. Следовательно, сигнал Wi1 никак не связан с входным словом x.

В связи с этим под реакцией автомата Мура, установленного в состояние am, на входное слово x = Zi1, Zi2,..., Zik будем понимать выходное слово той же длины w = l(am, x) = Wi2 Wi3...Wik+1, сдвинутое по отношению к x на один такт.

Рассмотрим пример. Пусть задан автомат Мура:

Подадим на вход этого автомата ту же последовательность, что и для автомата Мили: x=z1 z2 z2 z1 z2 z2. Последовательность смены состояний и вырабатываемых выходных сигналов представлена в таблице:

 
 
  w1 w2 w3 w4
  a1 a2 a3 a4
z1 a2 a3 a4 a4
z1 a4 a1 a1 a1

 

 

 

Сравнивая реакции автомата Мили (табл. 13) и автомата Мура (табл.15), отмечаем, что эти реакции на одно и то же слово x совпадают. Следовательно автоматы Мили и Мура реализуют одно и то же преобразование слов входного алфавита. Такие автоматы называются эквивалентными. Строгое определение эквивалентности следующее:

<== предыдущая лекция | следующая лекция ==>
Конституционные принципы организации правосудия | Два автомата с одинаковыми входными и выходными алфавитами называются эквивалентными, если после установки их в начальное состояние их реакции на любое входное слово совпадают
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 912; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.