КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Связь между моделями Мили и Мура
Рассмотрим некоторый автомат Мили, заданный таблицами переходов и выходов. Таблица переходов а) и выходов б) автомата Мили
Подадим на вход автомата, установленного в состояние а1, входное слово x=z1 z2 z2 z1 z2 z2. Так как d(а1, z1) = a2, l(a1, z1) = W2, то под воздействием входного сигнала z1 автомат перейдет в состояние а2 и выдаст на переходе выходной сигнал W2. Затем, находясь в состоянии а2 под воздействием сигнала Z2 перейдет в состояние а1=d(а2, z2) и выдаст сигнал W1=l(a2, z2) и т.д. В табл. 13 приведена последовательность состояний, которые автомат проходит, воспринимая входное слово x, и выходные сигналы, вырабатываемые на этих переходах. Назовем выходное слово w = l (a1, x) реакцией автомата Мили в состоянии а1 на входное слово x. В нашем случае w = w2 w1 w2 w2 w1 w2 Как видно, из приведенного примера, в ответ на входное слово длины k автомат Мили выдаст последовательность состояний длины k +1 и выходное слово длины k. В общем виде поведение автомата Мили, установленного в состояние am, можно описать следующим образом (табл. 14).
Аналогично можно описать поведение автомата Мура, находящегося в состоянии a1, при приходе входного слова x = Zi1, Zi2,..., Zik,учитывая, что W(t) = l(a(t)):
Очевидно, что для автомата Мура выходной сигнал Wi1= l(am) в момент времени i1 не зависит от входного сигнала Zi1 и определяется только состоянием am. Следовательно, сигнал Wi1 никак не связан с входным словом x. В связи с этим под реакцией автомата Мура, установленного в состояние am, на входное слово x = Zi1, Zi2,..., Zik будем понимать выходное слово той же длины w = l(am, x) = Wi2 Wi3...Wik+1, сдвинутое по отношению к x на один такт. Рассмотрим пример. Пусть задан автомат Мура: Подадим на вход этого автомата ту же последовательность, что и для автомата Мили: x=z1 z2 z2 z1 z2 z2. Последовательность смены состояний и вырабатываемых выходных сигналов представлена в таблице:
Сравнивая реакции автомата Мили (табл. 13) и автомата Мура (табл.15), отмечаем, что эти реакции на одно и то же слово x совпадают. Следовательно автоматы Мили и Мура реализуют одно и то же преобразование слов входного алфавита. Такие автоматы называются эквивалентными. Строгое определение эквивалентности следующее:
Дата добавления: 2014-01-07; Просмотров: 912; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |